Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Признак Лейбница





Если для знакочередующегося числового ряда

(19)

Выполняются два условия:

1. Члены ряда убывают по модулю u1 > u2 >…> un >…,

2.

то ряд (19) сходится, причём его сумма положительна и не превосходит первого члена ряда.

Следствие. Остаток ряда Лейбница имеет знак своего первого члена и меньше его по абсолютной величине, т.е.

Если в знакочередующемся ряде члены ряда монотонно убывают по абсолютным значениям и imUn=0 (nà∞), то ряд сходится.

Дано: U1>U2>U3>...; imUn=0 (nà∞); U1-U2+U3-U4+..., Ui>0

Доказательство: S2n ¾ чётная частичная сумма:

S2n=+U1-U2+U3-U4+...-U2n;

S2n=(U1-U2)+(U3-U4)+...+(U2n-1-U2n);

S2n>0 ¾ возрастает.

S2n=U1-(U2-U3)-(U4-U5)-...-U2n; S2n<U1, U1>0; imS2n=S {nà∞}

imS2n+1 {nà∞} = im(S2n+U2n+1)=S;

Чётные и нечётные суммы с одним пределом => ряд сходится.

1) Заметим, что S>0, т.е. знак суммы совпадает со знаком первого члена.

2) S<U1

 

38. Абсол и условная сходимость.

О. Ряд вида (1)

наз знакочеред-ся.

Признак Лейбница (сх-ть знакочер ряда).

Для того, чтобы ряд (1) сх-ся достаточно, чтобы абсол значения убывали и →0 при возрастании n, т.е.

О. Если ряд, сост из абсол значений величин сх-ся, то ряд наз абсолютно сходящимся.

Теорема: Если ряд явл абсол сх-ся, то исх ряд сх-ся.

Док-во:восп-ся 1 признаком сравнения

Рассм-м ряд - ряд из абсол значений величин

Доказана сх-ть по 2-му признаку сравнения, след-но исх ряд сх-ся абсолютно.

О. Если ряд, образ из абсол значений его величин расх-ся, а исх ряд сх-ся, то он наз условно сх-ся.

 

39. Понятие степенного ряда. Область сходимости степенного ряда. Теорема Абеля.

Ряд вида , где - числа, называемые коэффициентами ряда, x – переменная, наз-ся степенным рядом. Интервал (-R;R) наз интервалом сх-ти степ ряда. Заметим, что для x €(-R;R) ряд сходится абсолютно, а в точках x= ± R степенной ряд может сходиться или расходиться. Для нахождения радиуса сходимости можно воспольз-ся, признаками Даламбера или Коши. Теорема. Если существует | an+1/ an|=L, то R=1/L= | an/ an+1|. (Док-во. Рассмотрим ряд anxn. Применим к нему признак Даламбера. | an+1xn+1/ anxn|= | an+1/ an|∙| x | =L∙| x |. Отсюда следует, что если L∙| x |<1, т,е. если | x |<1/L, то ряд сходится абсолютно. Если L∙| x |>1, то ряд расходится. Теорема доказана.) Заметим, что если L=0, для любого | x | то R=∞. Если L=∞, для любого x≠0, то R=0. Если R=0, то ряд сходится в единственной точке x0=0; если R=∞, то ряд сходится на всей числовой прямой. Итак, интервал сходимости ряда anxn есть (-R;R). Для нахождения области сходимости ряда надо отдельно исследовать сходимость в точках x=R и x=-R; в зав-ти от рез-тов этого исслед-я обл-ю сх-ти ряда м. б. один из промежутков: [-R;R],(-R;R),[-R;R),(-R;R]. Теорема Абеля: 1) Если степенной ряд anxn сходится при x=x0, то он сходится причем абсолютно для всех x, удовлетворяющих неравенству |x|<|x0|. 2) Если же ряд anxn расходится при x=x1, то он расходится при всех x, удовлетворяющих условию |x|>|x1|. (Док-во 1)Так как числовой ряд anx0n сходится, то anx0n=0. Это означает, что числовая последовательность {anx0n} ограничена.Тогда перепишем степенной ряд в виде a0 + a1x0 (x/x0) + a2x02(x2/x02) +…+…= anx0n (x/x0)2. Рассмотрим ряд из абсолютных величин. |a0| + |a1x0 (x/x0) | + |a2x02(x2/x02) | +…+…<= M + M| x/x0| + M| x/x0|2 +…= M(1+q+ q2+…). Это геометрическая прогрессия с q=(x/x0)<1—сходится. Из признака сравнения следует абсолютная сходимость степенного ряда. 2)От противного. Пусть степенной ряд сходится при некотором x*, | x*|> x1. Но тогда согласно 1-ой части теоремы, степенной ряд сходится для всех | x |< x*. В том числе должен сходится и при x= x0, так как | x |< | x*|. Но это противоречит предположению теоремы. Теорема доказана.)

 

Date: 2015-09-05; view: 715; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию