![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Определители n-го порядка
Очевидно, что для системы из n линейных уравнений с n неизвестными получим матрицу коэффициентов размером Введем понятие определителя n -го порядка. Определение 4.1: Определителем n -го порядка называется число равное -сумме n! слагаемых; -каждое слагаемое есть произведение n элементов матрицы, взятых по одному из каждой строки и каждого столбца; -каждое слагаемое берется со знаком «+», если перестановка из вторых индексов четная, и со знаком «-», если перестановка из вторых индексов нечетная, при условии, что первые индексы образуют натуральный ряд чисел. Т.о. Здесь å берется по всем возможным перестановкам
5. Основные свойства определителей. Установим основные свойства определителей, которые для простоты будем показывать на определителе 2-го порядка. 1. При замене строк соответствующими столбцами (именуемой транспонированием) определитель остается неизменным. Действительно:
Следовательно, Примечание: Полученный выше результат дает нам право утверждать, что строки и столбцы определителя, именуемые в дальнейшем рядами, равноправны. 2. При перестановке двух рядов определитель меняет знак на противоположный. Действительно,
что и требовалось доказать. 3. Если в определителе два параллельных ряда одинаковы, то он равен нулю. Действительно, поменяем местами две одинаковых строки. Тогда величина определителя не изменится, а знак в силу свойства 2. поменяется. Единственное число, которое не меняется при изменении знака – ноль. 4. Общий множитель членов любого ряда можно вынести за знак определителя.
5. Если все элементы любого ряда являются суммами одинакового числа слагаемых, то определитель равен сумме определителей, в которых элементами рассматриваемого ряда служат отдельные слагаемые. что и требовалось доказать. 6. Определитель не изменится, если к элементам любого ряда прибавить соответствующие элементы параллельного ряда, умноженные на некоторое число. Умножим вторую строку на Действительно, в силу свойств 3,4,5
что и требовалось доказать.
6. Миноры и алгебраические дополнения элементов определителя. Рассмотрим определитель n -го порядка:
Выделим в определителе
Если в определителе Определение 6.1. А лгебраическим дополнением элемента
Пример 6.1. Найти минор
Date: 2015-04-23; view: 1182; Нарушение авторских прав |