Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Посточнные Стокса





Постоянной Стокса называется величина, которая определяется следующим образом

(5.5)


где гармоническая функция внутри объема интегрирования.

Вернемся к формуле (5.3). Воспользуемся формулой сложения гармонических функций (4.19). Ее, очевидно, можно переписать следующим образом

Следовательно

(5.6)


Функции текущих (штрихованных) координат и являются гармоническими, так как они принадлежат к шаровым функциям первого типа. Следовательно, по определению (5.5) интегралы вида и являются стоксовыми постоянными.

Введем обозначения

(5.7)


Здесь, как несколько позже убедимся, М -- масса тела, а -- постоянная, имеющая размерность длины, а и безразмерные постоянные Стокса.

Теперь функцию Лапласа для потенциала притяжения во внешней точке

Можно представить следующим образом

(5.8)


Суммируя по всем , получим искомое разложение потенциала притяжения в ряд Лапласа

(5.9)


Все рассуждения мы провели для нормированных функций, отмечая их чертой сверху. Однако эти же рассуждения справедливы и для ненормированных функций. В этом случае постоянные Стокса будут иметь несколько иной вид. Опуская выкладки, приведем лишь окончательную формулу

(5.10)


где при и при .







Date: 2015-09-05; view: 508; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.008 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию