Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Посточнные Стокса
Постоянной Стокса называется величина, которая определяется следующим образом
где гармоническая функция внутри объема интегрирования. Вернемся к формуле (5.3). Воспользуемся формулой сложения гармонических функций (4.19). Ее, очевидно, можно переписать следующим образом Следовательно
Функции текущих (штрихованных) координат и являются гармоническими, так как они принадлежат к шаровым функциям первого типа. Следовательно, по определению (5.5) интегралы вида и являются стоксовыми постоянными. Введем обозначения
Здесь, как несколько позже убедимся, М -- масса тела, а -- постоянная, имеющая размерность длины, а и безразмерные постоянные Стокса. Теперь функцию Лапласа для потенциала притяжения во внешней точке Можно представить следующим образом
Суммируя по всем , получим искомое разложение потенциала притяжения в ряд Лапласа
Все рассуждения мы провели для нормированных функций, отмечая их чертой сверху. Однако эти же рассуждения справедливы и для ненормированных функций. В этом случае постоянные Стокса будут иметь несколько иной вид. Опуская выкладки, приведем лишь окончательную формулу
где при и при . Date: 2015-09-05; view: 508; Нарушение авторских прав |