Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Аналитическое представление функции, заданной на поверхности сферы, рядом Лапласа
Свойство ортогональности сферических функций делает их незаменимыми для аналитического представления физического поля, рельефа или других величин, заданных в виде карты на сферической поверхности. Сферические функции играют ту же роль, что и тригонометрические для приближенного представления произвольной функции, заданной на отрезке рядом Фурье. Ряд, заданный в виде суммы сферических гармоник, иногда называют рядом Лапласа. Пусть -- известная, кусочно-непрерывная функция, заданная в сферических координатах. Аппроксимацию этой функции зададим в виде конечного ряда, содержащего сферических гармоник
Определим коэффициенты этого разложения так, чтобы функция аппроксимировала функцию с наименьшим среднеквадратическим отклонением
Для определения коэффициентов и воспользуемся условиями где и , заданные числа. Выполняя дифференцирование, с учетом (4.13), получим
В полученные выражения нужно подставить вместо правую часть формулы (4.13), заменив в ней индексы суммирования и на и . Мы получим интегралы вида Вследствие ортогональности сферических гармоник только те из интегралов отличны от нуля, которые содержат произведения одноименных гармоник с одинаковыми индексами. Выполнив операции, получим
Итак, наилучшая средняя квадратическая аппроксимация функции заданной на сфере, многочленом, составленным из нормированных сферических гармоник степени и порядка , имеет вид
где -- нормированная присоединенная функция Лежандра. Специальное исследование показало, что наш ряд при неограниченном увеличении числа членов при некоторых дополнительных условиях, накладываемых на функцию , сходится. Однако, исследование скорости этой сходимости лежит за пределами нашего курса. Date: 2015-09-05; view: 484; Нарушение авторских прав |