![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Аналитическое представление функции, заданной на поверхности сферы, рядом Лапласа
Свойство ортогональности сферических функций делает их незаменимыми для аналитического представления физического поля, рельефа или других величин, заданных в виде карты на сферической поверхности. Сферические функции играют ту же роль, что и тригонометрические для приближенного представления произвольной функции, заданной на отрезке рядом Фурье. Ряд, заданный в виде суммы сферических гармоник, иногда называют рядом Лапласа. Пусть
Определим коэффициенты этого разложения так, чтобы функция
Для определения коэффициентов где
В полученные выражения нужно подставить вместо Вследствие ортогональности сферических гармоник только те из интегралов отличны от нуля, которые содержат произведения одноименных гармоник с одинаковыми индексами. Выполнив операции, получим
Итак, наилучшая средняя квадратическая аппроксимация функции
где Специальное исследование показало, что наш ряд при неограниченном увеличении числа членов при некоторых дополнительных условиях, накладываемых на функцию Date: 2015-09-05; view: 504; Нарушение авторских прав |