Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Построение поля комплексных чисел
Из курса школьной математики известно, что любое уравнение имет решение при . С другой стороны, квадратное уравнение не всегда имеет решение. Например, решения не имеет уравнение . Возникает вопрос, нельзя ли сделать так, чтобы любое квадратное уравнение имело решение? Предположим, что уравнение имет решение. Число (абстрактный элемент, не принадлежащий полю вещественных чисел), которое является решением, обозначим буквой , то есть . Мы должны иметь возможность умножать это число на любое вещественное число. Значит, должны появиться числа вида , где -- вещественное число. Для них должна быть возможность сложения с любым вещественным числом. Поэтому должны появиться числа вида . Определение 17.1 Числа вида , где и -- вещественные числа, называются комплексными числами. Посмотрим, какие действия арифметики можно производить с комплексными числами. Сложение чисел должно удовлетворять обычным правилам, поэтому:
При вычислении произведения скобки раскроем привычным способом: Так как , то получим
Итак, результаты сложения и умножения комплексных чисел снова оказались комплексными числами. Операцию вычитания определить не сложно:
Рассмотрим операцию деления. Учтем, что при умножении числителя и знаменателя дроби на одно и то же число дробь не меняется: Так как , то
Результат деления двух комплексных чисел оказывается снова комплексным числом. Как видно из полученной формулы, деление нельзя выполнить лишь в том случае, когда , но в этом случае делитель тоже равен нулю. Следовательно, невозможно лишь деление на нуль, что соответствует обычным правилам действий с числами. Итак, мы вроде бы расширили множество вещественных чисел. Но есть в этом построении один существенный пробел. Мы предположили, что есть такое число , что . А, может быть, его на самом деле нет?2 Чтобы исправить это упущение, используем для построения комплексных чисел уже существующее множество. Пусть -- множество пар вещественных чисел: . На этом множестве определим операции
Очевидно, что комплексное число, как оно было определено раньше, -- просто другая форма записи пары вещественных чисел , где вместо запятой стоит "+", а второй элемент пары выделяется умножением на букву . В новой форме записи вещественные числа -- это пары , числу соответствует пара , сложение, вычитание, умножение и деление пар чисел и комплексных чисел происходят по одинаковым правилам. Таким образом, комплексные числа стали реально существующим множеством. Однако в математике, в силу традиции, используется запись комплексного числа , введенная в начале раздела3. Причем принято считать, что Можно проверить, что комплексные числа образуют поле. В нем обратным элементом к комплексному числу служит результат деления 1 на : Это поле называется полем комплексных чисел и обозначается . Число называется мнимой единицей, числа -- мнимыми числами. Если , то число называется вещественной частью комплексного числа и обозначается , число называется мнимой частью и обозначается . Число называется сопряженным числу и обозначается , то есть . Замечание 17.1 В электротехнике, где буква обозначает ток, мнимую единицу обозначают буквой . Если операции сложения, вычитания и умножения комплексных чисел соответствуют обычным правилам раскрытия скобок, то для выполнения деления нужно или запомнить формулу (17.4), или, что проще, каждый раз при выполнении деления умножать числитель и знаменатель дроби на число, сопряженное знаменателю. Пример 17.1 Пусть , . Тогда: Вычислим еще : Date: 2015-07-02; view: 2415; Нарушение авторских прав |