Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Свойства математического ожидания





Е0. Математическое ожидание случайной величины есть ЧИСЛО!

Е1.Для произвольной функции g: R —> R

 

· = , если распределение дискретно;

· = , если распределение абсолютно непрерывно.

Доказательство. Мы докажем это свойство (как и. почти все дальнейшие) только для дискретного распределения. Пусть принимает значения c1,c2,… c вероятностями . Тогда

E2. Математическое ожидание постоянной равно этой постоянной: .

ЕЗ. Постоянную можно Вынести за знак математического ожидания

Доказательство: Следует из свойства Е1 при g(x)=cx.

Е4. Математическое ожидание суммы любых случайных величин и равно сумме их математических ожиданий: .

Доказательство. Для величин с дискретным распределением: пусть xk и уп значения соответственно, Для функции можно доказать свойство, аналогичное Е1.Пользуясь этим свойством для g (х,у) = x + у, запишем:

E5. Если п.н. («почти наверное», то есть с вероятностью 1; ), то . Если п.н., и при этом , то п.н., то есть .

Следствие 12. Если п.н., то . Если п.н., и при этом , то п.н.

Е6. Математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий: если и независимы, то .

Доказательство.







Date: 2016-08-30; view: 328; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию