![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Уравнение Паули. Собственный магнитный момент электрона
Основным уравнением нерелятивистской квантовой механики является уравнение Шредингера, описывающее движение нерелятивистской частицы без учета спина: где Введение же новой степени свободы, связанной со спином, дает новые возможности для перехода от величин классической механики к квантовым операторам и позволяет построить оператор
где Произвольное состояние электрона при учете спина записывается в виде двухрядной матрицы Вследствие этого и гамильтониан Гамильтониан не должен зависеть от направлений, т.е. пространственные переменные должны входить в гамильтониан равноправным образом и в то же время он должен включать в себя матрицы Паули
Используя свойства матриц и коммутативность операторов
вычислим квадрат скалярного произведения Откуда Как и следовало ожидать в отсутствие внешних полей наличие спина никоим образом не проявляется, и введение оператора, определяемого формулой (24.1), здесь ничего не вносит. Иначе обстоит дело при наличии магнитного поля, когда классическая функция Гамильтона электрона в электромагнитном поле с векторным потенциалом Согласно правилам квантования и учитывая наличие спина у электрона оператор Гамильтона примет вид:
Рассмотрим квадрат скалярного произведения операторов Используя свойства матриц Паули, получим Учитывая выражения, справедливые для квадрат скалярного произведения примет вид:
В данном случае операторы
где Оператор Гамильтона (24.3) с учетом (24.4), (24.5) примет вид:
или
где постоянная Определив выражение оператора Гамильтона (24.7), запишем волновое уравнение, называемое уравнением Паули, которое описывает состояние электрона в магнитном поле без поправки на теорию относительности:
Date: 2015-05-18; view: 530; Нарушение авторских прав |