![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Вывод соотношений неопределенностей для координат и канонически сопряженных импульсов
Физические величины, изображающиеся не коммутирующими операторами в рамках квантовой механики не могут быть одновременно определены (изменены). Наиболее важным является в этом случае вычисление отклонений значений таких величин от средних значений их операторов. Вычислим отклонение от средних значений операторов двух канонически сопряженных величин: координаты
Разброс значений величин около их средних значений характеризуется дисперсией или среднеквадратичным отклонением:
Без ограничения общности доказательства можно выбрать систему координат с началом в центре волнового пакета (
Для нахождения связи между
где
где
интегралы в (11.10) и (11.11) вычислены по частям и при этом учтены стандартные условия (а именно, конечность), наложенные на волновые функции. Условие
откуда
Это неравенство представляет строгую формулировку соотношения неопределенностей для координаты
Аналогичные соотношения неопределенностей имеют место для координат y, z и сопряженных для них импульсов Таким образом, соотношения неопределенностей Гейзенберга для координат и канонически сопряженных импульсов имеют вид:
Соотношения (11.14) показывают, что координаты и сопряженные импульсы не могут быть одновременно точно измерены, и что минимально возможная величина произведения дисперсий измеряемых координаты ( Соотношения неопределенностей (11.14) являются и рабочим инструментом в квантовой механике, позволяя проводить важные количественные оценки: энергии основного состояния атома водорода, минимально возможной энергии у частиц в потенциальных ямах; ответить на вопросы такого типа: могут ли быть электроны в составе атомного ядра и т.д. В качестве примера подобного использования соотношений неопределенностей оценим минимальную энергию колебаний линейного гармонического осциллятора (ЛГО). Из классического выражения для энергии ЛГО
где
Исследуя выражение (11.16) на экстремум (
это так называемая энергия нулевых колебаний осциллятора, отличие ее от нуля иллюстрирует принципиально общее положение квантовой механики: нельзя реализовать микрообъект на «дне потенциальной ямы», причем этот вывод не зависит от вида потенциальной ямы, т.к. является прямым следствием соотношений неопределенностей.
Date: 2015-05-18; view: 1114; Нарушение авторских прав |