Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Следствия
§1. АКСИОМЫ СТЕРЕОМЕТРИИ В разделе планиметрии элементарной геометрии вы изучали свойства геометрических фигур, лежащих в одной плоскости. Теперь мы приступаем к изучению свойств фигур, у которых не все точки лежат в одной плоскости, т.е. фигур пространства. Эта часть геометрии называется стереометрией. Стереометрия (от греч. згегеоз — пространственный и теггео — измеряю)—раздел геометрии, исследующий свойства пространственных фигур. В стереометрии рассматриваются математические модели тех материальных объектов, с которыми ежедневно имеют дело архитекторы, конструкторы, строители и другие специалисты. Кроме того, школьный курс стереометрии служит основой черчения и начертательной геометрии — важнейших дисциплин любого технического вуза, поэтому этот раздел геометрии необходим всем. Основными фигурами в пространстве являются точка, прямая и плоскость. Они принимаются без определений. Как вы помните, в планиметрии рассматривалась только одна плоскость, и все изучаемые фигуры располагались в этой единственной плоскости. В стереометрии же приходится различать много плоскостей. Будем считать, что законы планиметрии распространяются на каждую плоскость. Материальными моделями части плоскости являются, например, поверхность оконного стекла, хорошо отполированного пола и т.п. (рис. 1,а). Понятно, что это грубые модели. В геометрии плоскость мыслится неограниченной, идеально ровной и гладкой, не имеющей толщины. Изображают плоскости в виде параллелограммов или других ограниченных частей плоскости (рис. 1,б,в). Обозначают их обычно греческими буквами а, р, у, 8 и др. Точки же и прямые отмечают так же, как в планиметрии. б) в) Рис. 1 Введение нового геометрического образа — плоскости—заставляет расширить систему аксиом. Поэтому мы вводим группу аксиом С, которая выражает основные свойства плоскостей в пространстве. Эта группа состоит из следующих аксиом. Date: 2015-04-23; view: 1127; Нарушение авторских прав |