Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Следствия





§1. АКСИОМЫ СТЕРЕОМЕТРИИ

В разделе планиметрии элементарной геометрии вы изучали свойства геометрических фигур, лежащих в одной плоскости. Теперь мы приступаем к изучению свойств фигур, у которых не все точки лежат в одной плоскости, т.е. фигур пространства. Эта часть геометрии называется стереометрией.

Стереометрия (от греч. згегеозпространственный и теггео — измеряю)—раздел геометрии, исследующий свойства пространственных фигур. В стереометрии рассматриваются математические модели тех материальных объектов, с которыми ежедневно имеют дело архитекторы, конструкторы, строители и другие специалисты. Кроме того, школьный курс стереометрии служит основой черчения и начертательной геометрии — важнейших дисциплин любого технического вуза, поэтому этот раздел геометрии необходим всем.

Основными фигурами в пространстве являются точка, прямая и плоскость. Они принимаются без определений.

Как вы помните, в планиметрии рассматривалась только одна плоскость, и все изучаемые фигуры располагались в этой единственной плоскости. В стереометрии же приходится различать много плос­костей. Будем считать, что законы планиметрии распространяются на каждую плоскость.

Материальными моделями части плоскости являются, например, поверхность оконного стекла, хорошо отполированного пола и т.п. (рис. 1,а). Понятно, что это грубые модели. В геометрии плоскость мыслится неограниченной, идеально ровной и гладкой, не имеющей толщины.

Изображают плоскости в виде параллелограммов или других ограниченных частей плоскости (рис. 1,б,в). Обозначают их обычно греческими буквами а, р, у, 8 и др. Точки же и прямые отмечают так же, как в планиметрии.

б)

в)

Рис. 1


Введение нового геометрического образа — плоскости—заставляет расширить систему аксиом. Поэтому мы вводим группу аксиом С, которая выражает основные свойства плоскостей в пространстве. Эта группа состоит из следующих аксиом.







Date: 2015-04-23; view: 1127; Нарушение авторских прав



mydocx.ru - 2015-2025 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию