Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Линейные неравенства в пространстве





Для понимания информации необходимо хорошо изучить линейные неравенства на плоскости, поскольку многие вещи буду похожи. Параграф будет носить краткий обзорный характер с несколькими примерами, так как материал на практике встречается довольно редко.

Если уравнение задаёт плоскость, то неравенства
задаютполупространства. Если неравенство нестрогое (два последних в списке), то в решение неравенства кроме полупространства входит и сама плоскость.

Как и для линейных неравенствплоскости, справедлив аналогичный принцип: если одна точка полупространства удовлетворяет неравенству, то и ВСЕ точки данного полупространства удовлетворяют данному неравенству.

Читайте примеры и посматривайте на чертёж:

1) . Как понимать данное неравенство? «Икс» и «зет» могут быть любыми, а вот «игрек» всегда больше либо равно нулю. Данное неравенство определяет правое полупространство; так как оно нестрогое, то координатная плоскость входит в решение.

2) – «игрек» и «зет» могут быть любыми, а вот «икс» строго меньше нуля. Неравенство задаёт дальнее от нас полупространство, и ввиду его строгости, координатная плоскость не входит в решение.

3) Сначала мысленно начертим плоскость – данная плоскость параллельна «родной» координатной плоскости и расположена на высоте (на 2 единицы выше плоскости ). При любых «икс» и «игрек» – «зет» меньше либо равно двум. Поэтому неравенство определяет нижнее полупространство + саму плоскость .

4) Дана плоскость . Я специально подобрал плоскость, которая «высекает» треугольник в первом октанте (такой, как на чертеже). Требуется строгим неравенством задать полупространство, которое содержит начало координат.

Составим вспомогательный многочлен и вычислим его значение в начале координат: , таким образом, искомое неравенство: .

Проведённый обзор полезен не только в аналитической геометрии, но и для решения ряда задач математического анализа.

 






Date: 2015-04-23; view: 462; Нарушение авторских прав

mydocx.ru - 2015-2020 year. (0.017 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию