Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Скалярное произведение в координатах, если векторы заданы суммами векторов





Пример 13

Найти скалярное произведение векторов , если

Решение: Напрашивается трафаретное решение предыдущего раздела, где мы составляли произведение и раскрывали скобки: . Но сейчас нам неизвестны длины векторов и угол между ними. Зато известны координаты. Решение на самом деле будет очень простым:

Найдём вектор :

Найдём вектор :

Проделаны элементарные действия с векторами, которые рассмотрены в конце урока Векторы для чайников.

Вычислим скалярное произведение:

Ответ:

Что и говорить, иметь дело с координатами значительно приятнее.

Пример 14

Найти скалярное произведение векторов и , если

Это пример для самостоятельного решения. Здесь можно использовать ассоциативность операции, то есть не считать , а сразу вынести тройку за пределы скалярного произведения и домножить на неё в последнюю очередь. Решение и ответ в конце урока.

В заключение параграфа провокационный пример на вычисление длины вектора:

Пример 15

Найти длины векторов , если

Решение: Снова напрашивается путь из предыдущего раздела: , и опять мы не знаем длин векторов и угла между ними. Решение элементарно:

Найдём вектор :

И его длину по тривиальной формуле :

Скалярное произведение здесь вообще не при делах!

Как не при делах оно и при вычислении длины вектора :
Стоп. А не воспользоваться ли очевидным свойством длины вектора? Что можно сказать о длине вектора ? Данный вектор длиннее вектора в 5 раз. Направление противоположно, но это не играет роли, ведь разговор о длине. Очевидно, что длина вектора равна произведению модуля числа на длину вектора :
– знак модуля «съедает» возможный минус числа .

Таким образом:

Ответ:







Date: 2015-04-23; view: 711; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию