Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Проекция вектора на координатные оси. Направляющие косинусы вектора





Рассмотрим вектор плоскости , заданный своими координатами в ортонормированном базисе . Для удобства я отложу его от начала координат:

Проекцией вектора на координатную ось является в точности его первая координата: (красная черта). Обозначим через угол между вектором и координатным вектором : (красная дуга). Тогда:
(определение косинуса в прямоугольном треугольнике недавно упоминалось).

Аналогично со второй координатой: проекцией вектора на координатную ось является его вторая координата: (малиновая черта). Обозначим через угол между вектором и координатным вектором : (двойная малиновая дуга). Тогда:

Косинусы называются направляющими косинусами вектора. Причём, для любого ненулевого вектора справедливо равенство . Проверим его справедливость для рассматриваемого вектора:
, что и требовалось проверить.

Заметьте, что приведённые выше выкладки не изменятся, если вектор отложить от любой другой точки плоскости.

Итак, координаты вектора в ортонормированном базисе – это его проекции на направления соответствующих координатных векторов (координатные оси).

Направляющие косинусыненулевого вектора , заданного в ортонормированном базисе ,выражаются формулами , а сами координаты вектора можно выразить через его длину и данные косинусы: , то есть: .

Кроме того, вектор с координатами из соответствующих направляющих косинусов:

коллинеарен исходному вектору «вэ»;

его длина равна единице (так называемый единичный вектор).

С пространственными векторами, заданными в ортонормированном базисе , разборки точно такие же. Рассмотрим произвольный ненулевой вектор . Его координаты представляют собой проекции вектора на оси соответственно. Обозначим углы данного вектора с ортами через: . Тогданаправляющие косинусы вектора выражаются формулами: , и справедливым является равенство .

В практических задачах чаще всего требуется найти направляющие косинусы вектора, заключительный пример урока:

Пример 20

Найти направляющие косинусы векторов:
а) , проверить, что ;
б) , проверить, что .



Простая задача для самостоятельного решения. Фактически, она состоит в том, чтобы найти длину векторов и составить эти самые направляющие косинусы. Однако не забывайте, что вместе с направляющими косинусами нам автоматически становятся известными единичные векторы, которые коллинеарны векторам «а» и «бэ». К слову, практическая задача на нахождения единичного вектора рассмотрена в Примере №5 урокаУравнение плоскости. Ну а здесь решение и ответ совсем близко.

После изучения данного урока, у вас уже весьма приличная подготовка по аналитической геометрии. Чтобы паззл сложился окончательно, читайте статьи Линейная (не) зависимость векторов. Базис векторов и Векторное и смешанное произведение векторов.

Любите векторы, и векторы полюбят вас!

Решения и ответы:

Пример 2: Решение:

Ответ:

Пример 4: Решение:

Ответ:

Пример 6: Решение:

Ответ:

Пример 7*: Решение:Используем формулу .
Найдём скалярное произведение:

Найдём длину вектора :

Найдём длину вектора :

Таким образом:

Ответ:

Пример 10: Решение:
а) Найдем векторы:

Вычислим скалярное произведение:
, значит, прямые не перпендикулярны.
б) Найдем векторы:

Вычислим скалярное произведение:
, значит, прямые перпендикулярны.
Ответ: а) прямые не перпендикулярны, б)

Пример 12: Решение:Составим и решим уравнение:

Ответ: при

Пример 14: Решение:

Ответ:

Пример 17: Решение: Найдем векторы

Вычислим косинус угла:

Угол:
Ответ:

Пример 19: Решение: Найдём векторы:


Ответ:

Пример 20: Решение:
а) Найдём длину вектора: .
Направляющие косинусы: .
Проверка: , что и требовалось проверить.
б) Найдём длину вектора: .
Направляющие косинусы: .
Проверка: , что и требовалось проверить.

Ответ:

Автор: Емелин Александр

 

Высшая математика для заочников и не только >>>

(Переход на главную страницу)

Как можно отблагодарить автора?


 

 

Линейная зависимость и линейная независимость векторов.
Базис векторов. Аффинная система координат

 

В аудитории находится тележка с шоколадками, и каждому посетителю сегодня достанется сладкая парочка – аналитическая геометрия с линейной алгеброй. В данной статье будут затронуты сразу два раздела высшей математики, и мы посмотрим, как они уживаются в одной обёртке. Сделай паузу, скушай «Твикс»! …блин, ну и чушь спорол. Хотя ладно, забивать не буду, в конце концов, на учёбу должен быть позитивный настрой.

Линейная зависимость векторов, линейная независимость векторов, базис векторови др. термины имеют не только геометрическую интерпретацию, но, прежде всего, абстрактный алгебраический смысл. Само понятие «вектор» с точки зрения линейной алгебры – это далеко не всегда тот «обычный» вектор, который мы можем изобразить на плоскости или в пространстве. За доказательством далеко ходить не нужно, попробуйте нарисовать вектор пятимерного пространства . Или вектор погоды, за которым я только что сходил на Гисметео: – температура и атмосферное давление соответственно. Пример, конечно, некорректен с точки зрения свойств векторного пространства, но, тем не менее, никто не запрещает формализовать данные параметры вектором. Дыхание осени….



Нет, я не собираюсь грузить вас теорией, линейными векторными пространствами, задача состоит в том, чтобы понять определения и теоремы. Новые термины (линейная зависимость, независимость, линейная комбинация, базис и т.д.) носят общий алгебраический смысл (к которому можно причаститься в статье о ранге матрицы), но примеры будут даны геометрические. Таким образом, всё просто, доступно и наглядно. Помимо задач аналитической геометрии мы рассмотрим и некоторые типовые задания линейной алгебры. Для освоения материала желательно ознакомиться с уроками Векторы для чайников и Как вычислить определитель?

 






Date: 2015-04-23; view: 1085; Нарушение авторских прав

mydocx.ru - 2015-2020 year. (0.027 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию