Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Скалярное произведение в координатах





Скалярное произведение векторов и , заданных в ортонормированном базисе , выражается формулой

Скалярное произведение векторов , заданных в ортонормированном базисе , выражается формулой

То есть, скалярное произведение равно сумме произведений соответствующих координат векторов.

Пример 8

Найти скалярное произведение векторов:
а) и
б) и , если даны точки

Решение:
а) Здесь даны векторы плоскости. По формуле :

К слову: скалярное произведение получилось отрицательным, значит, угол между данными векторами является тупым. Пытливые умы могут отложить на плоскости векторы от одной точки, и убедиться, что это действительно так.

б) А тут речь идёт о точках и векторах пространства. Сначала найдём векторы:

Надеюсь, эта простейшая задача у вас уже отработана.

По формуле вычислим скалярное произведение:

К слову: скалярное произведение положительно, значит, угол между пространственными векторами является острым.

Ответ:

При некотором опыте скалярное произведение можно приноровиться считать устно.






Date: 2015-04-23; view: 416; Нарушение авторских прав

mydocx.ru - 2015-2020 year. (0.023 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию