Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Проверка векторов на ортогональность с помощью скалярного произведения





Вернёмся к важному случаю, когда векторы являются ортогональными. Напоминаю: векторы и ортогональны тогда и только тогда, когда . В координатах данный факт запишется следующим образом:
(для векторов плоскости);
(для векторов пространства).

Пример 9

а) Проверить ортогональность векторов: и
б) Выяснить, будут ли перпендикулярными отрезки и , если

Решение:
а) Выясним, будут ли ортогональны пространственные векторы. Вычислим их скалярное произведение:
, следовательно,

б) Здесь речь идёт об обычных отрезках плоскости (в чём сходство и различия вектора и отрезка, я очень подробно разъяснил на первом уроке). Речь идёт об обычных отрезках, а задача всё равно решается через векторы. Найдём векторы:

Вычислим их скалярное произведение:
, значит, отрезки и не перпендикулярны.

Обратите внимание на два существенных момента:

– В данном случае нас не интересует конкретное значение скалярного произведения, важно, что оно не равно нулю.

– В окончательном выводе «между строк» подразумевается: «если векторы не ортогональны, значит, соответствующие отрезки тоже не будут перпендикулярными». Геометрически это очевидно, поэтому можно сразу записывать вывод об отрезках: «значит, отрезки и не перпендикулярны».

Ответ: а) , б) отрезки не перпендикулярны.

Пример 10

Даны четыре точки пространства . Выяснить будут ли перпендикулярными следующие прямые:
а) ;
б) .

Это задача для самостоятельного решения. В условии требуется проверить перпендикулярность прямых. А решается задача снова через векторы по полной аналогии с предыдущим примером. Геометрически тоже всё очевидно – если удастся доказать перпендикулярность векторов, то из этого автоматически будет следовать перпендикулярность соответствующих прямых. Четыре вектора, которые вы найдёте, называют направляющими векторами прямых.

Полное решение и ответ в конце урока.

Мощь аналитической геометрии – в векторах. Так, в рассмотренных примерах, с помощью скалярного произведения можно установить не только ортогональность векторов самих по себе, но и перпендикулярность отрезков, прямых. И это приоткрылась только малая часть красоты предмета.

Завершая разговор об ортогональности, разберу ещё одну небольшую задачу, которая время от времени встречается на практике:

Пример 11

При каком значении векторы будут ортогональны?

Решение: По условию требуется найти такое значение параметра , чтобы данные векторы были ортогональны. Два вектора пространства ортогональны тогда и только тогда, когда .

Дело за малым, составим уравнение:

Раскрываем скобки и приводим подобные слагаемые:

Решаем простейшее линейное уравнение:

Ответ: при

В рассмотренной задаче легко выполнить проверку, в исходные векторы подставляем полученное значение параметра :

И находим скалярное произведение:
– да, действительно, при векторы ортогональны, что и требовалось проверить.

Пример 12

При каком значении скалярное произведение векторов будет равно –2?

Это простенький пример с векторами плоскости. Для самостоятельного решения.

Немного усложним задачу:







Date: 2015-04-23; view: 1147; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.008 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию