Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Гомотетия как пример преобразования подобия
О п р е д е л е н и е. Подобием с коэффициентом называется преобразование плоскости, при котором все расстояния умножаются на . Примеры подобий 1. Любое движение является подобием с коэффициентом . 2. Гомотетией с центорм и коэффициентом называется отображение плоскости в себя, при котором каждой точке ставится в соответствие точка такая, что . Проверить, что гомотетия является биективным отображением, а значит, является преобразованием плоскости. Для любых двух точек и их образов при гомотетии имеем . Тогда и , то есть гомотетия с коэффициентом является подобием с коэффициентом . Из условия получаем формулы гомотетии , позволяющие доказать свойства гомотетии: a. При гомотетии прямая, не проходящая через центр гомотетии, переходит в параллельную ей прямую, а прямая, проходящая через центр гомотетии – в себя. b. Гомотетия сохраняет простое отношение трех точек прямой, а значит, сохраняет отношение «лежать между» и отрезок переводит в отрезок, луч в луч, угол в угол. c. Гомотетия переводит угол в равный угол (Почему?). d. Гомотетия сохраняет ориентацию плоскости. Для доказательства этого свойства находим по формулам гомотетии координаты точек, определяющих репер – образ репера при гомотетии. Затем находим координаты базисных векторов репера и убеждаемся, что определитель матрицы перехода от базиса репера к базису репера равен , то есть реперы и одинаково ориентированы.
Date: 2015-05-04; view: 850; Нарушение авторских прав |