Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Группа аффинных преобразований, её подгруппы. Эрлангенская программа Ф. Клейна
Множество А всех аффинных преобразований плоскости является группой относительно композиции преобразований. Основным инвариантом этой группы является простое отношение трех точек прямой. Фигуры и называются аффинно-эквивалентными, если они эквивалентны относительно группы аффинных преобразований. Примерами аффинно-эквивалентных фигур являются любые два треугольника, любые два эллипса, две гиперболы, две параболы. Примерами подгрупп группы А аффинных преобразований являются: · – множество всех аффинных преобразований первого рода. К инвариантам группы А добавляется еще один инвариант – ориентация плоскости. · Р – группа подобий. К инвариантам группы А добавляется инвариант – величина угла. · – группа движений. К инвариантам группы подобий добавляется инвариант – расстояние. · – группа движений первого рода. К инвариантам группы движений добавляется инвариант – ориентация плоскости. Приведите ещё примеры подгрупп группы А и отметьте изменения в числе инвариантов. Можно заметить, что чем уже группа, тем шире список инвариантов. XIX век явился периодом бурного развития геометрических учений. Еще в начале этого столетия было распространено глубокое убеждение в уникальности евклидовой геометрии, так что выражение «геометрия» полностью отождествлялось с понятием «евклидова геометрия». Однако к рубежу 20-х, 30-х годов появляются первые работы Н.И. Лобачевского, Я. Бойяи, посвященные гиперболической геометрии. В конце 60-х годов была опубликована замечательная речь Римана, постулирующая равноправность трех «геометрий постоянной кривизны»: евклидовой, гиперболической и эллиптической. Бурное развитие геометрии поставило на повестку дня вопрос об общем описании всех рассматриваемых математиками «геометрических систем». В 1872 году 23-летний Феликс Клейн, вступая в должность профессора кафедры математики Эрлангенского университета, прочел открытую лекцию на тему «Сравнительное обозрение новейших геометрических исследований». Лекция Клейна за ясность позиции автора и открываемые широкие горизонты дальнейшего прогресса геометрии почти сразу получила в научном мире почетное звание «Эрлангенская программа». Идея Клейна состоит в следующем: Каждой группе преобразований соответствует своя геометрия – теория, которая изучает свойства фигур, сохраняющиеся при всех преобразованиях данной группы. Таким образом, имеем многообразие геометрий: аффинная геометрия, соответствующая группе аффинных преобразований, геометрия движений, геометрия подобий и т. д.
Date: 2015-05-04; view: 1171; Нарушение авторских прав |