Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
И четвертой степени удовлетворенности
Одним из языков анализа связи между этими свойствами является поиск ответа на вопрос: наблюдается ли статистическая зависимость между этими свойствами. Если наблюдается статистическая независимость У (удовлетворенные учебой на «четыре») от П (политологи), то 30/250 (доля удовлетворенных учебой политологов среди всех удовлетворенных учебой на четыре балла) должно равняться 70/750 (доля «остальных» политологов среди всех «остальных»). То же самое запишем в общем виде:
Из этого следует, что a(d + b) = (а + c)d —> ab = cd. Тогда разность ab —cd можно использовать как меру отклонения от статистической независимости. Такое же соотношение получим, если будем рассуждать по-другому. Если статистическая независимость П от У наблюдается, то, 30/100 (доля удовлетворенных политологов среди политологов) должно равняться 220/900 (доля удовлетворенных «не политологов» среди всех «не политологов»). На этой разности и основан коэффициент Юла (G, Yule), который имеет следующий вид: Знаменатель введен для того, чтобы значения этого коэффициента изменялись от -1 до +1. Если вы видите коэффициенты двухэтажные (со знаменателями), то очень часто (но не всегда) наличие знаменателя служит как бы для нормирования интервала изменения значений коэффициента. Содержательный смысл меры связи, как правило, передает числитель. Рассмотрим свойства (поведение) этого коэффициента: 1. Он равен единице либо когда с = 0 /схема 3.4.1 а)/, либо d = 0 /схема 3.4.1 б)/. В первом случае все «не политологи» относятся к «остальным» по удовлетворенности. Обратное утверждение неверно. Во втором случае все политологи удовлетворены учебой на 4 балла. Опять же обратное утверждение будет неверным. 2. Он равен минус единице, если а = 0 /схема 3.4.1 в)/ или b = 0 /схема 3.4.1 г)/. В первом случае все политологи относятся к «остальным» по удовлетворенности. Во втором случае все «не политологи» удовлетворены учебой на четыре балла. Обратные утверждения неверны.
Схема 3.4.1
3. Коэффициент равен нулю, если ab = cd, т. е. в случае статистической независимости наших изучаемых свойств. В нашем случае коэффициент равен 0,14. Естественным образом, возникает вопрос, каким будет значение коэффициента для генеральной совокупности. Ведь пока мы получили только оценку связи по выборочной совокупности. Значение коэффициента небольшое, но отличное от нуля, поэтому возникает другой вопрос. Значимо ли это отличие от нуля или мы получили ненулевое значение случайно? Если это отклонение незначимо, то наблюдается статистическая независимость наших свойств (быть политологом и быть удовлетворенным учебой на четыре балла). И наоборот, если это отклонение значимо, то имеем случай статистической зависимости. Для определения значимости и для определения «истинного» значения (для генеральной совокупности) необходим аппарат математической статистики, а именно аппарат проверки статистических гипотез. Ихне следует путать с содержательными гипотезами исследования. К этому вопросу мы вернемся несколько позже после введения так называемой статистики хи-квадрат. Рассмотрим использование меры Юла в сравнительном контексте. Пусть целевое свойство ¾ «быть удовлетворенным учебой на четыре балла». Попытаемся определить, какая из будущих профессий теснее связана с этим свойством, сильнее влияет на подобную удовлетворенность. По данным, представленным в таблице 3.3.1, сформируем таблицы сопряженности вида (2x2) для подсчета шести значений для шести будущих профессий. Так как для политологов значение коэффициента уже было получено по таблице 3.4.1, то ниже на схеме 3.4.2 приведены таблицы для оставшихся пяти будущих профессий. В этих таблицах приведены только абсолютные частоты. Целевой признак обозначен как (У). (+У) и означает обладать свойством «удовлетворенности учебой четыре балла», а (-У) ¾ не обладать, т. е. остальные варианты удовлетворенности учебой.
(2) (3) (4) (5) (6) социологи культурологи филологи психологи историки
Схема 3.4.2. Таблицы сопряженности «удовлетворенность учебой на 4 балла» с будущими профессиями студентов Для политологов коэффициент Юла был равен Q,=0,14. Для социологов Q2=0,l6, так как
Аналогичным образом вычисляются значения коэффициента для Культурологов, филологов, психологов и историков. Соответственно получим следующие значения: Q3=0,40; Q4 =-0,33; Q, =0,13; Q6=-0,29. Таким образом, если не учитывать, прямая (значения коэффициента положительные) или обратная (значения коэффициентов отрицательные) связь, наши шесть профессий по степени влияния на удовлетворенность упорядочиваются следующим образом:
|Q3|>|Q4|>|Q6|>|Q2|>|Q1|>|Q5|
Свойства «быть культурологом» и «быть филологом», скорее всего, связаны со свойством «удовлетворенность учебой на четыре балла» и влияют на него. Свойства «быть психологом» и «быть политологом», скорее всего, не влияют. От них удовлетворенность учебой не зависит. Еще раз хочется напомнить, в каком смысле «влияет», в каком смысле «зависит». Пока только в смысле статистической зависимости. Почему мы говорим «скорее всего»? Потому что по формальным критериям может оказаться, например, что все значения коэффициентов незначимо отличаются от нуля. Полученный результат ранжирования — лишь контекст для формирования новых содержательных гипотез и усложнения моделей изучения связи. Date: 2015-09-24; view: 311; Нарушение авторских прав |