Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Касательная и нормаль к плоской кривой





Пусть даны кривая y = f(x) и точка M (x1 ; y1) на ней. Требуется составить уравнения касательной и нормали (смотри рисунок).

Как известно, угловой коэффициент k касательной к кривой y = f(x) в точке M (x1 ; y1) равен значению f '(x1) производной y' = f '(x) при x = x1/ Следовательно, уравнение касательной можно записать в виде уравнения прямой, проходящей через данную точку в данном направлении, т.е. в виде y - y1 = f '(x1)(x - x1)

Нормалью называется прямая, проходящая через точку касания перпендикулярно касательной. поэтому ее угловой коэффициент равен , а уравнение записывается в виде

 

Ф-ии нескольких переменных. Основные понятия (область определения, предел,, непрерывность)

Определение 4.1. Если каждой точке M(x1 ,x2 ,...,xn ) некоторой области D из пространства Rn соответствует вполне определенное число z R, то говорят, что задана функция n переменных z=f(x1,x2 ... xn) (z=f (M )). обозначается D( f ) .

Множество D называется областью определения функции и обозначается D( f ) .Обычно под областью определения аналитически заданной функции подразумевается ее естественная область определения.

Множество E( f ) = {zR z = f (M), M D( f )} называется областью значений функции f . Если n = 2, то функция z = f (M) переходит в функцию двух независимых переменных z = f (x, y) , где (x, y)∈D R2 .

Определение 4.4. Говорят, что последовательность точек M1(x1,y1), M2 (x2,y2)…Mn (xn, yn) плоскости x0y сходится к точкеM0(x0,y0), если расстояние dn= = стремится к нулю когда n→∞.

Определение 4.5. Число A называется пределом функции f (x, y) в точке M0 , если для любой последовательности точек M1 ,M2 ,Mn…. сходящейся к точке M0 , соответствующая последовательность значений функции f(M1), f(M2)….f(Mn) сходится к числу А : limMM0 f(M)

Определение 4.7. Функция z = f (x, y) называется непрерывной в точке M0(x0,y0), если она определена в самой точке M0 и некоторой ее окрестности и выполняется равенство limMM0 f(M)=f(M0) т.е. предел функции в точке равен значению функции в этой точке.

Определение 4.8. Функция z = f (x, y) называется непрерывной в области R, если она непрерывна в каждой точке этой области.

 






Date: 2015-09-05; view: 176; Нарушение авторских прав

mydocx.ru - 2015-2019 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию