![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Перевірка гіпотез про рівність математичних сподівань та дисперсій для нормальних сукупностей.⇐ ПредыдущаяСтр 16 из 16
Нехай ξ та h — дві незалежні випадкові величини, кожна з яких має нормальний розподіл
α — похибка першого роду, тобто ймовірність прийняти гіпотезу H 1, коли правильна H 0, 2 Ф (C a)=1– a..Якщо (X, Y) Rn 1, то приймається гіпотеза H 1, якщо ж (X, Y)Ï Rn 1, то приймається H 0. 2.Гіпотеза про рівність математичних сподівань при невідомих дисперсіях. Нехай потрібно перевірити такі ж гіпотези, як і в попередньому випадку, але де Число 3.Гіпотеза про рівність дисперсій при невідомих математичних сподіваннях. Нехай тепер потрібно перевірити гіпотезу де 4.Гіпотеза про рівність дисперсій при відомих математичних сподіваннях. Ця гіпотеза перевіряється аналогічно попередній, але в даному випадку 40.Лінійна регресія. Регресія. Нехай ξ та h — дві випадкові величини (залежні у загальному випадку), і ми хочемо знайти найкраще в деякому розумінні наближення величини h деякою функцією g (ξ) від величини . Величина g (x) називається найліпшим наближенням величини h в середньому квадратичному, якщо Лінійна регресія. Розглянемо регресію в класі лінійних функцій, тобто припустимо, що де і — невідомі параметри. Введемо такі позначення:
Лінійна середньоквадратична регресія Повернемося тепер до сформульованої на початку задачі про найліпше визначення функції Означення. Оцінкою невідомих параметрів а функція Розглянемо важливий випадок, коли функція
де У випадку поліноміальної регресії оцінки невідомих параметрів де Якщо значення
Оцінки
Якщо величини
Вибірковий коефіцієнт кореляції визначається за формулою: Коефіцієнт кореляції рангів. У деяких випадках натрапляємо на ознаки, які не піддаються кількісним оцінкам. Тоді кожній оцінці можна поставити у відповідність порядковий номер, який назвемо рангом. Нехай n осіб за якістю A мають ранги Є й і інші показники щільності зв’язку між рангами. Якщо не можна визначити рангову відмінність декількох осіб, то беруть середній ранг. У цьому випадку використовують коефіцієнт кореляції рангів Кендела: де
1.Формули комбінаторики. 1 2.Випадкова подія. Операції над подіями. 4 3.Класичне означення ймовірності 5 4.Геометрична ймовірність. 6 5.Аксіоми теорії ймовірності 7 6.Властивості ймовірності 8 7.Умовна ймовірність.Незалежність подій. 9 8. Формула повної ймовірності. Формула Байєса. 10 9.Послідовність незалежних випробувань.Схема Бернуллі. 11 10.Найімовірніше число випробувань в схемі Бернуллі. 12 11. Локальна теорема Муавра-Лапласа: 14 12. Інтегральна теорема Муавра-Лапласа: 15 13.Теорема Пуассона. 16 14. Функції розподілу випадкових величин. Властивості. 17 15.Дискретні випадкові величини. 18 16. Математичне сподівання випадкової величини. Властивості математичного сподівання. 19 17. Дисперсія випадкової величини. Властивості дисперсії 20 18.Основні дискретні розподіли та їхні числові характеристики 21 19.Неперервні випадкові величини. 24 20. Щільність ро зподілу Неперервні випадкові величини 25 21. Математичне сподівання неперервної випадкової величини. 26 22. Дисперсія неперервної випадкової величини. 27 23.Основні неперервні розподіли та їх числові хар-ки. 28 24.Нормальний розподіл в.в.Правило 3-х сигм. 30 25.Розподіл функції випадкової величини. 31 26.Сумісний розподіл випадкових величин. 33 27.Коваріація. Коефіцієнт кореляції двох випадкових величин 34 28.Нерівності Маркова і Чебишева. 35 29.Вибірка з генеральної сукупності. Статистичний та інтервальний статистичний ряд. 37 Частота. 38 30.Статистична функція розподілу. Гістограма. 39 31.Точкові оцінки для математичного сподівання та дисперсії 41 32.Методи моментів і максимальної правдоподібності побудови статистичних оцінок параметрів. 45 33. Надійні інтервали. 47 34. Побудова надійних інтервалів для математичного сподівання і дисперсії нормального закону. 48 35.Cтатистична гіпотеза та загальна схема її перевірки. 49 36. Перевірка гіпотез про вигляд розподілу(критерій Колмогорова та критерій 37.Критерії однорідності (критерій Смирнова – Колмогорова та критерій однорідності 38. Перевірка гіпотез про незалежність (критерій незалежності 39.Перевірка гіпотез про рівність математичних сподівань та дисперсій для нормальних сукупностей. 57 40.Лінійна регресія. 60
Date: 2016-08-31; view: 604; Нарушение авторских прав |