Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






НеоПРЕДЕЛЕННЫЙ иНТЕГРАЛ





Определение 1. Функция называется первообразной для функции на интервале , если она дифференцируема на и для любого выполняется равенство

.

Например, функция является первообразной для функции на всей числовой прямой, так как при любом значении , т. е. выполняется равенство ; функция является первообразной для функции на всей числовой прямой, так как в каждой точке .

Определение 2. Множество всех первообразных функций для функции на интервале называется неопределенным интегралом от функции на этом интервале и обозначается символом , где – знак интеграла; – подынтегральная функция; – подынтегральное выражение; – переменная интегрирования.

Таким образом:

,

где – некоторая первообразная для на интервале ; C – произвольная постоянная. Например, поскольку функция является первообразной для функции , то .

Операция нахождения неопределенного интеграла от данной функции называется интегрированием этой функции. Интегрирование представляет собой операцию, обратную дифференцированию.

 

 







Date: 2016-07-25; view: 260; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию