Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Точки разрыва функции и их классификация





Точки разрыва функции классифицируются следующим образом:

Определение 3. Точка называется точкой разрыва первого рода функции , если в этой точке существуют конечные пределы и , но они не равны между собой: . Величина называется скачком функции в точке .

Определение 4. Точка называется точкой устранимого разрыва функции , если в этой точке существуют конечные пределы и , они равны между собой: , но сама функция не определена в точке или определена, но .

Определение 5. Точка называется точкой разрыва второго рода функции , если в этой точке хотя бы один из односторонних пределов ( или ) не существует или равен бесконечности.

 

Пример 3. Найти точки разрыва следующих функций и определить их тип:

 

а)

 

б)

 

Решение:

а) функция определена и непрерывна на интервалах , и , так как на каждом из этих интервалов она задана непрерывными элементарными функциями. Следовательно, точками разрыва данной функции могут быть только те точки, в которых функция меняет свое аналитическое задание, т.е. точки и . Найдем односторонние пределы функции в точке :

 

, .

 

Так как односторонние пределы существуют и конечны, но не равны между собой, то точка является точкой разрыва первого рода. Скачок функции: .

Для точки находим:

 

,

, .

 

Таким образом, имеем: . Следовательно, в точке наша функция является непрерывной.

График данной функции изображен на рисунке:

 

б) в точке функция меняет свое аналитическое задание, следовательно, в этой точке возможен разрыв. Найдем односторонние пределы:

,

, .

Так как , то точка является точкой разрыва первого рода. Скачок функции: .

В точке функция не определена, значит, точка является точкой разрыва. Определим ее тип:

, .

Следовательно, в точке функция имеет разрыв второго рода.







Date: 2016-07-25; view: 342; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию