Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как противостоять манипуляциям мужчин? Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Показательная функция. Степень с иррациональным показателем.

 

Зафиксируем положительное число а и поставим в соответствие каждому числу число . Тем самым получим числовую функцию f(x) = ax, определенную на множестве Q рациональных чисел и обладающую ранее перечисленными свойствами. При а=1 функция f(x) = axпостоянна, так как 1x=1 для любого рационального х.


 

Нанесем несколько точек графика функции у =2x предварительно вычислив с помощью калькулятора значения 2x на отрезке [—2; 3] с шагом 1/4 (рис. 1, а), а затем с шагом 1/8 (рис. 1, б).Продолжая мысленно такие же построения с шагом 1/16, 1/32 и т. д., мы видим, что получающиеся точки можно соединить плавной кривой, которую естественно считать графиком некоторой функции, определенной и возрастающей уже на всей числовой прямой и принимающей значения в рациональных точках (рис. 1, в). Построив достаточно большое число точек графика функции , можно убедиться в том, что аналогичными свойствами обладает и эта функция (отличие состоит в том, что функция убывает на R).

Эти наблюдения подсказывают, что можно так определить числа 2α и для каждого иррационального α, что функции , задаваемые формулами y=2x и будут непрерывными, причем функция у=2x возрастает, а функция убывает на всей числовой прямой.

Опишем в общих чертах, как определяется число aα для иррациональных α при а>1. Мы хотим добиться того, чтобы функция у = ax была возрастающей. Тогда при любых рациональных r1 и r2, таких, что r1<α<r2, значение aα должно удовлетворять неравенствам ar1αr1.

Выбирая значения r1 и r2, приближающиеся к х, можно заметить, что и соответствующие значения ar1 и ar2 будут мало отличаться. Можно доказать, что существует, и притом только одно, число у, которое больше всех ar1 для всех рациональных r1и меньше всех ar2 для всех рациональных r2. Это число у по определению есть аα.

Например, вычислив с помощью калькулятора значения 2x в точках хn и х`n, где хn и х`n — десятичные приближения числа мы обнаружим, что, чем ближе хn и х`n к , тем меньше отличаются 2xn и 2x`n.



Так как , то


 

и, значит,


 

Аналогично, рассматривая следующие десятичные приближения по недостатку и избытку, приходим к соотношениям


;

 


;

 


;

 


;

 


.

 

Значение вычисленное на калькуляторе, таково:


.

 

Аналогично определяется число aα для 0<α<1. Кроме того полагают 1α=1 для любого α и 0α=0 для α>0.








Date: 2016-07-25; view: 74; Нарушение авторских прав

mydocx.ru - 2015-2018 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию