![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
С полной или неполной информацией
Важное подмножество последовательных игр составляют игры с полной информацией. В такой игре участники знают все ходы, сделанные до текущего момента, равно как и возможные стратегии противников, что позволяет им в некоторой степени предсказать последующее развитие игры. Полная информация не доступна в параллельных играх, так как в них неизвестны текущие ходы противников. Большинство изучаемых в математике игр — с неполной информацией. Например, вся “соль” "Дилеммы заключённого" или "Сравнения монеток" заключается в их неполноте. В то же время есть интересные примеры игр с полной информацией: “Ультиматум”, “Многоножка”. Сюда же относятся шахматы, шашки, го, манкала и другие. Часто понятие полной информации путают с похожим - совершенной информацией. Для последнего достаточно лишь знание всех доступных противникам стратегий, знание всех их ходов необязательно 5/что называется чистой стратегией.Если в игре каждый из противников применяет только одну и ту же стратегию, то про саму игру в этом случае говорят, что она происходит в чистых стратегиях, а используемые игроком А и игроком В пара стратегий называются чистыми стратегиями. Определение. В антагонистической игре пара стратегий (А i, В j) называется равновесной или устойчивой, если ни одному из игроков не выгодно отходить от своей стратегии. Применять чистые стратегии имеет смысл тогда, когда игроки А и В располагают сведениями о действиях друг друга и достигнутых результатах. Если допустим, что хотя бы одна из сторон не знает о поведении противника, то идея равновесия нарушается, и игра ведется бессистемно. В рассмотренном в §2.2 примере 1 максиминные чистые стратегии А 4 и В 5неустойчивы по отношению к информации о поведении противника; они не обладают свойством равновесия. Действительно, предположим, что мы узнали, что противник придерживается стратегии В 3. Используя эту информацию, выберем стратегию А 1 и получим больший выигрыш, равный 7. Но если противник узнал, что наша стратегия А 1, он выберет стратегию В 4, сведя наш выигрыш к 4. Таким образом, в рассмотренном примере максиминные чистые стратегии оказались неустойчивы по отношению к информации о поведении другой стороны. Но это не всегда так. Рассмотрим матричную игру G (3х4), платежная матрица которой приведена на рис 2.3.
Рис. 2.3 В этом примере нижняя цена игры равна верхней: a=b=9, т.е. игра имеет седловую точку. Оказывается, что в этом случае максиминные стратегии А 2 и В 2 будут устойчивыми по отношению к информации о поведении противника. Действительно, пусть игрок А узнал, что противник применяет стратегию В 2. Но и в этом случае игрок А будет по-прежнему придерживаться стратегии А 2, потому что любое отступление от стратегии А 2 только уменьшит выигрыш. Равным образом, информация, полученная игроком В, не заставит его отступить от своей стратегии В 2. Пара стратегий А 2 и В 2 обладает свойством устойчивости, а выигрыш (в рассматриваемом примере он равен 9), достигаемый при этой паре стратегий, оказывается седловой точкой платежной матрицы. Признак устойчивости (равновесности) пары стратегии - это равенство нижней и верхней цены игры. Стратегии А i и В j (в рассматриваемом примере А 2, В 2), при котором выполняется равенство нижней и верхней цены игры, называются оптимальными чистыми стратегиями, а их совокупность - решением игры. Про саму игру в этом случае говорят, что она решается в чистых стратегиях. Величина называется ценой игры. Если n >0, то игра выгодна для игрока А, если n <0 - для игрока В; при n =0 игра справедлива, т.е. является одинаково выгодной для обоих участников. Однако наличие седловой точки в игре - это далеко не правило, скорее - исключение. Большинство матричных игр, не имеет седловой точки, а следовательно, не имеет оптимальных чистых стратегий. Впрочем, есть разновидность игр, которые всегда имеют седловую точку и, значит, решаются в чистых стратегиях. Это - игры с полной информацией. гией 6.что называется нижней ценной игры? Платежная матрица Date: 2016-05-25; view: 501; Нарушение авторских прав |