Главная Случайная страница



Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника







Вычисление векторного произведения в прямоугольных координатах





Пусть задана прямоугольная декартова система координат. Легко видеть, что для базисных векторов , , справедливо:

Þ очевидно, из коллинеарности.

. Из этого следует, что .

(см. рисунок).

Тогда для двух векторов

и .

Имеем:

Это равенство формально можно переписать в виде

.

Пример. Вычислить синус угла между векторами , .

Имеем: . . .

Так как модуль векторного произведения численно равен площади параллелограмма, построенного на перемножаемых векторах, то если , .

Имеем .

Если параллелограмм расположен в плоскости, то и .

Пример. Даны три точки , и .

Найти .

Решение. , где – площадь параллелограмма, построенного на векторах и . Имеем: , .

.

6о. Смешанное произведение векторов

Пусть даны три вектора , , .

Определение 1.Смешанным произведением векторов называется произведение следующего вида: , т.е. вначале вектора и перемножаются векторно, а затем результат умножается скалярно на вектор .

В результате получается скалярная величина.








Date: 2015-04-23; view: 325; Нарушение авторских прав



mydocx.ru - 2015-2021 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию