Главная Случайная страница



Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника







Свойства изоморфных пространств





1. Нулевому элементу V соответствует нулевой элемент и наоборот.

Доказательство: Если .

2. Если элементам соответствуют , то линейная комбинация векторов равна нулю V, т.е. линейная комбинация с теми же коэффициентами равна нулю, т.е. .

Доказательство следует из 1.

3. Если V и изоморфны, то максимальное число линейно независимых векторов в каждом из пространств одно и тоже, т.е. два изоморфных пространства имеют одну и туже размерность.

4. Пространства разных размерностей не могут быть изоморфными.

Теорема 6. Любые два –мерных линейных пространства V и над одним и тем же полем изоморфны.

Доказательство.Выберем в V базис ­­­− базис Каждому элементу , поставим в соответствие элемент с теми же координатами в базисе .

Однако это соответствие взаимнооднозначно, т.к. имеет единственным образом определенные координаты , которые в свою очередь, определяют единственный элемент .

В силу равноправности V и , соответствует единственный . Легко видеть, что если в силу введенного соответствия.

Таким образомо все линейные пространства данной размерности –ная полем изоморфны, то есть их свойства, связанные с линейными операциями неразличимы.

 

Тема 5. Пространство геометрических векторов,








Date: 2015-04-23; view: 327; Нарушение авторских прав



mydocx.ru - 2015-2021 year. (0.016 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию