Главная Случайная страница



Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника







I. Элементы линейной алгебры и аналитической геометрии





 

 

Пример 1. Даны векторы 1(2 ; 4 ; 3 ; 2), 2(4 ; 2 ; 2 ; 8), 3(4 ; 5 ; 8 ; 7), 4(6 ; 7 ; 5 ; 3) и (18 ; 24 ; 13 ; 6). Показать, что векторы 1, 2, 3, 4 образуют базис четырехмерного линейного пространства R4 и найти координаты вектора в этом базисе.

 

Решение.

Выражение х1+ 12 2+…+хк к называется линейной комбинацией векторов 1, 2, … к с коэффициентами х1, х2, …хк. Любая линейная комбинация векторов линейного пространства представляет собой вектор того же пространства. Если некоторый вектор линейного пространства представлен в виде линейной комбинации векторов 1,…, к того же пространства, т.е.

(1)

 

то говорят, что вектор разложен по векторам 1,… к Система векторов 1, 2, … к некоторого линейного пространства называется линейно независимым, если равенство

 

(2)

 

имеет место только при нулевых значениях коэффициентов х1, х2, … , хк, если же равенство (2) выполняется и при условии, что хотя бы один из коэффициентов х1, х2, … , хк, отличен от нуля, то система векторов 1, 2, … к называется линейно зависимой.

Для векторов с заданными координатами 11, y1, z1, p1), 2(x2, y2, z2, p2), 3(x3, y3, z3, p3), 4(x4, y4, z4, p4), составим определитель и вычислим его.

 

(3)








Date: 2015-04-23; view: 487; Нарушение авторских прав



mydocx.ru - 2015-2021 year. (0.011 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию