Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Атом во внешнем магнитном поле. Эффект Зеемана





Расщепление в магнитном поле энергетических уравнений атомов, приводящее к расщеплению спектральных линий в спектрах, называют эффектом Зеемана. Различают эффект Зеемана: нормальный (простой), когда каждая линия расщепляется на три компонента, и аномальный (сложный), когда каждая линия расщепляется на большее, чем три, число компонентов.

Эффект Зеемана характерен для атомов парамагнетиков, так как только эти атомы обладают отличным от нуля магнитным моментом и могут взаимодействовать с внешним магнитным полем.

Атом, обладающий магнитным моментом, приобретает в магнитном поле дополнительную энергию

E = - μ JB B, (13.54)


где μ JB — проекция полного магнитного момента атома на направление поля В. Имея в виду формулу (13.53), запишем выражение для энергии каждого подуровня:

E = E 0 + ∆ E = E 0 + μ Б gBmJ, mJ = J, J -1, …, - J, (13.55)


где Е0 — энергия уровня в отсутствие магнитного поля.

Отсюда следует, что уровни с квантовым числом ^ J расщепляются в магнитном поле на 2J + 1 равноотстоящих друг от друга подуровней, причем величина расщепления зависит от множителя Ланде g, т. е. интервалы δЕ между соседними подуровнями пропорциональны g: δЕ ≈ g. Таким образом, магнитное поле в результате расщепления уровней снимает вырождение по mJ.

Кроме этого, необходимо учесть, что возможны только такие переходы между подуровнями, принадлежащими разным уровням, при которых выполняются следующие правила отбора для квантового числа тJ:

mJ = 0, ±1. (13.56)


Если в (13.55) B = 0, то энергетический уровень определяется только первым членом, если В ≠ 0, то необходимо учитывать возможные значения mJ, а оно может принимать 2 J + 1 значений. Это означает расщепление первоначального энергетического уровня на 2 J + 1 подуровней.

Теперь можно понять происхождение мультиплетов Зеемана. На рис. 13.11 рассмотрены возможные переходы в атоме водорода между состояниями р (l = 1)иs(l =0) для двух случаев:


  1. когда В = 0 (внешнее магнитное поле отсутствует);

  2. когда В ≠ 0.


В отсутствие поля наблюдается одна линия с частотой v 0. В магнитном поле p -состояние расщепляется на три подуровня (при l = 1, ml, = 0, ± 1), с каждого из которых могут происходить переходы на уровень s, и каждый переход характеризуется своей частотой: v 0 - ∆ v, v 0, v 0 + ∆v. Следовательно, в спектре появляется триплет (наблюдается нормальный эффект Зеемана).


Рис. 13.11.


Не вдаваясь в подробности, отметим, что нормальный эффект Зеемана наблюдается в том случае, если исходные линии не обладают тонкой структурой (являются синглетами). Если исходные уровни обладают тонкой структурой, то в спектре появляется большее число компонентов и наблюдается аномальный эффект Зеемана.

СПИН
Spin

Спин (от англ. spin – вращаться) – собственный момент количества движения элементарной частицы, имеющий квантовую природу и не связанный с её перемещением в пространстве как целого. Спин отвечает неотъемлемому и неизменному внутреннему вращательному состоянию, присущему частице, хотя это вращательное состояние нельзя трактовать классически – как вращение тела вокруг собственной оси. Наряду со спином, любая частица, перемещаясь как целое в пространстве (например, по замкнутой орбите) относительно некой внешней точки (центра орбиты), имеет относительно этой точки внешний или орбитальный момент количества движения.
Спин был первоначально введен для того, чтобы объяснить экспериментально наблюдаемый факт, что многие спектральные линии в атомных спектрах состоят из двух отдельно расположенных линий. Например, первая линия серии Бальмера в атоме водорода, которая проявляется при переходах между уровнями с n = 3 и n = 2, должна наблюдаться как одиночная линия с длиной волны λ = 6563 Å, однако на самом деле наблюдались две линии с расстоянием между ними Δλ = 1.4Å. Это расщепление первоначально связывалось с еще одной дополнительной степенью свободы электрона – вращением. Предполагалось, что электрон можно рассматривать как классический вращающийся волчок, и величина спин связывалась с его характеристикой вращения. На самом деле, как выяснилось позже, спин имеет квантовую природу и не связан с какими-либо перемещениями частицы в пространстве. Величина вектора спина равна ћ[s(s + 1)]1/2, где ћ = h/2π (h - постоянная Планка), а s - квантовое число спина, т.е. характерное для каждой частицы полуцелое или целое положительное число (оно может быть и нулевым). Частицы с целым спином называются бозонами, с полуцелым – фермионами.
Переносчики взаимодействий γ-квант, W±-, Z-бозоны и 8 глюонов имеют спин s = 1 и являются бозонами. Лептоны e, μ, τ, νe, νμ, ντ, кварки u, d, s, c, b, t имеют спин s = 1/2 и являются фермионами.
Понятие спина применяют и к сложным, составным микрообъектам – атомам, атомным ядрам, адронам. В этом случае под спином J понимают момент количества движения микрообъекта в состоянии покоя, т.е. когда орбитальный (внешний) момент количества движения микрообъекта = 0. Спины составных микрообъектов являются векторной суммой спиновых и орбитальных моментов входящих в их состав частиц – ядра и электронов в случае атома, протонов и нейтронов в случае ядра, кварков и глюонов в случае протона, нейтрона и других адронов. Спин частицы однозначно связан со статистикой, которой подчиняется ансамбль частиц с данным спином. Все частицы с целым и нулевым спином подчиняются статистике Бозе-Эйнштейна. Частицы полуцелым спином подчиняются статистике Ферми-Дирака.


 

СПИНОВОЕ КВАНТОВОЕ ЧИСЛО - квантовое число, определяющее величину спина квантовой системы (атома, иона, атомного ядра, молекулы), т. е. её собств. (внутр.) момента кол-ва движения (момента импульса). Спиновый момент импульса s квантуется: его квадрат определяется выражением , где s - С. к. ч. (называемое часто просто спином). Проекция вектора s на произвольное направление z также квантуется: для частиц с ненулевой массой (где ms - магнитное спиновое число), т. е. принимает 2s + 1 значений. Число s может принимать целые, нулевые или полуцелые значения.







Date: 2015-05-18; view: 2410; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию