Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Опыт Штерна и Герлаха. Орбитальный магнитный момент.В квантовой теории магнитный момент μ и механический момент М атома следует заменить операторами и : (13.46)





Орбитальный магнитный момент. В квантовой теории магнитный момент μ и механический момент М атома следует заменить операторами и :

(13.46)

 

Отсюда следует, что изучение свойств магнитного момента электрона сводится к изучению свойств операторов и . А так как операторы и , и отличаются друг от друга только постоянным множителем, то их свойства совершенно аналогичны: магнитный и механический моменты квантуются по одинаковым правилам.

В стационарном состоянии определенные значения могут иметь только модуль магнитного момента и одна из его проекций на произвольную ось Z. Имея в виду (13.46), а также (13.34) и (13.36), запишем собственные значения операторов и :

L = 0, 1, 2,... (13.47)
μLz = -μБ mL, mL = 0, ± 1, ± 2, …, ± L, (13.48)
     


где μБмагнетон Бора: μБ = eћ/2mc. Он играет роль кванта магнитного момента (точнее его проекции μz).


Опыты Штерна и Герлаха. Наличие у атомов магнитных моментов и их квантование было доказано экспериментально Штерном и Герлахом (1921). В их опытах пучок атомов пропускался сквозь сильно неоднородное поперечное магнитное поле (рис. 13.10, а). Необходимая степень неоднородности поля достигалась с помощью специальной формы полюсных наконечников N и S электромагнита (рис. 13.10, б). После прохождения магнитного поля пучок атомов попадал на фотопластинку Р и оставлял на ней след.



а)

Рис. 13.10.

Если атомы обладают магнитным моментом, то согласно электродинамике на них будет действовать сила, проекция которой на ось Z (см. рис. 13.10, б)

(13.49)


где μ z проекция магнитного момента атома на ось Z. Из этой формулы видно, что для получения необходимого эффекта при малых значениях μ z нужно обеспечить достаточно большую не­однородность поля, т. е. ∂Bz/∂z. Это и достигалось с помощью указанной формы полюсных наконечников.

В отсутствие магнитного поля след пучка на фотопластинке ^ Р имел вид одной полоски (z = 0). При включении же магнитного поля наблюдалось расщепление пучка (рис. 13.10, в), что являлось следствием квантования проекции магнитного момента μ z в формуле (13.49): μ z может принимать только ряд дискретных значений. В опытах обнаружилось также, что для разных атомов число компонент, на которые расщеплялся пучок, было или нечетным, или четным. Анализ полученных результатов показал, что нечетное число компонент возникает у атомов, обладающих только орбитальным механическим моментом ML, тогда магнитное поле снимает вырождение по L и число компонент (значений mL) будет равно 2 L + 1, т. е. нечетным.

Если же момент атома является суммой орбитального и спинового, т. е. определяется квантовым числом ^ J, то число компонент будет равно 2 J + 1, и в зависимости от того, полуцелым или целым будет значение J, число компонент будет соответственно четным или нечетным.

^ Спиновый магнитный момент. Зная степень неоднородности магнитного поля, т. е. дВг/дг, Штерн и Герлах по величине расщепления пучка на фотопластинке рассчитали значение проекции спинового магнитного момента на направление магнитного поля, μB. Выяснилось, что μB равен одному магнетону Бора. Этот результат приводит к гиромагнитному отношению вдвое превышающему гиромагнитное отношене для орбитальных моментов. В связи с этим говорят, что спин обладает удвоенным магнетизмом.

Итак, спиновый магнитный момент и его проекция на произвольную ось Z определяются как

(13.50)

 

μSz = -2 μБ ms, ms=S,S- 1, …, -S. (13.51)


При S = 1/2 ms = +1/2 и -1/2.

Принято говорить, что спиновый магнитный момент электрона равен одному магнетону Бора. Такая терминология обусловлена тем, что при измерении магнитного момента мы обычно измеряем его проекцию, а она как раз и равна одному μ Б. Опыты Штерна и Герлаха явились еще одним убедительным доказательством наличия у электрона спина. Помимо этих опытов следует упомянуть и о так называемых магнитомеханических явлениях — опытах Эйнштейна и де Хааса, а также опыте Барнетта. И в этих опытах было обнаружено, что гиромагнитное отношение спиновых моментов тоже вдвое больше отношения орбитальных.

^ Полный магнитный момент атома. Вследствие удвоенного магнетизма спина гиромагнитное отношение полных моментов μ/MJ оказывается значительно более сложным. Оно зависит от квантовых чисел L, S и J. Соответствующий расчет, проводимый в квантовой теории, позволил найти магнитный момент μ и его проекцию на ось Z:

(13.52)

 

μ z = - μ Б gmJ, mJ = J, J -1, …, - J, (13.53)


где gмножитель (или фактор) Ланде

В частности, в синглетных состояниях (S = 0) J = L, g = 1, и мы приходим к формулам (13.47) и (13.48). А при L = 0 (J = S, g = 2) — к формулам (13.50) и (13.51).

Date: 2015-05-18; view: 601; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию