Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Любую строку расширенной матрицы системы можно умножить на некоторое число и прибавить к любой другой строке
Метод Гаусса (метод последовательного исключения пе –ременных) при использовании расширенной матрицы системы сводится к получению нулей ниже главной диагонали данной матрицы с помощью эквивалентных преобразований, чаще всего с помощью преобразования 4. Если в результате элементарных преобразований в рас- ширенной матрице системы, до черты (т.е. в основной мат- рице) получается матрица треугольного вида, т.е. все элемен- ты ниже главной диагонали равны нулю, а диагональные эле- менты все ненулевые:
то рассматриваемая система совместная и определённая, т.е. имеет единственное решение.
где Если же после преобразования расширенной матрицы, пос- ле получения нулей ниже главной диагонали в нижней строке основной матрицы осталось больше одного ненулевого эле –мента, т.е. основная матрица имеет вид трапеции, например
то система имеет бесконечно много решений. Рассмотрим пример решения системы методом Гаусса. Пусть дана система:
Составим расширенную матрицу этой системы:
Поменяем местами первую и третью строки матрицы:
С помощью первой строки полученной матрицы получим нули в первом столбце. Для этого первую строку умножим на (-1) и прибавим к второй строке, и её же умножим на (-2) и приба -вим к третьей строке, Получим новую матрицу
Умножим третью строку на (-3) и прибавим к второй строке и эту же строку прибавим к первой строке, получим
˜ Мы разделили последнюю строку на 47. После это третью строку умножим на (-29) и прибавим к второй строке и ту же строку умножим на (6) и прибавим к первой строке:
Слева от черты получили единичную матрицу, тогда после черты получено решение данной системы. Таким образом,
Получили тождественные равенства. Следовательно, в самом деле получено решение системы.
Рассмотрим ещё один пример:
Умножим первую строку на (-2) и прибавим к второй и тре -тьей строке, эту же строку умножим на (-1) и прибавим к четвёртой строке, получим:
Вторую строку умножим на (-1) и прибавим к первой строке и вторую строку просто прибавим к третьей строке:
Четвёртую строку разделим на (-2) и поменяем с третьей строкой:
После этого получим нули в третьем столбце, для чего тре- тью строку умножим на (-4) и прибавим к первой строке; ум -ножим на (-1) и прибавим к второй строке; умножим на (6) и прибавим к третьей строке. Получим:
Мы разделили последнюю строку на (-7). После этого можем получить нули в четвёртом столбце. Для этого последнюю строку прибавим к третьей строке; умножим на (-2) и приба- вим к второй строке и, умножив на (-5), прибавим к первой строке. В результате получается матрица:
Слева, до черты, получили единичную матрицу. Тогда после черты находится решение, т.е.
Подставив эти значения переменных в равенства системы, получим тождественные равенства.
Прежде чем перейти к рассмотрению систем произвольной размерности, вернёмся снова к понятию ранга матрицы, вве -дённому в § 3. Приведём утверждение, доказывать которое мы не будем.
Date: 2015-12-10; view: 420; Нарушение авторских прав |