Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






ІІІ бөлім. Конус





Конус деп тік бұрышты үшбұрышты катетінен айналдырғанда шығатын фигураны атайды.

V= R2H

Sб.б= RL

L2=H2+R2

Sт.б= Sб.б+Sтаб

2003ж №1 (3 нұсқа №11)Конустың жасаушысы 2 см-ге тең, осьтік қимасының төбесіндегі бұрышы 1200. Конустың табанының ауданын табыңыз.

AC=2 см <ACB=1200 Sтаб-? АВ2=AC2+BC2-2AC*BC*cos1200

АВ2= (2 )2+(2 )2+2*2 * =2*4*3+4*3=36

AB=6 R=3 Sтаб= R2 Sтаб=9

№2 (3 нұсқа №29)Конустың биіктігі 4см. Табанының диаметрі 6см. Бүйір бетінің ауданын табыңыз.

CH=4см

AB=6см R=3cм Sб.б= RL L2=H2+R2 L2=16+9=25 L=5

Sб.б= *3*5=15
№3 (8 нұсқа №26)Конустың биіктігі табанының радиусына тең. Көлемі V=9 .Жасаушысын табыңыз.

CH=R=x V=9 . L-? V= R2H R2H=9 X3=27

X=3 L2=H2+R2 L2=9+9=18 L=3

№4 (9 нұсқа №26)Конустың табанының радиусы 3 см, ал жасаушысы табан жазықтығына 450 бұрыш жасай көлбеген. Конустың көлемін және бүйір бетінің ауданын табыңыз. R=AH=3 см <CAH=450 V, Sб.б-?

СH=3 см L2=H2+R2 L2=(3 )2+(3 )2 L2=36 L=6 V= R2H

V= (3 )3=18 Sб.б= RL Sб.б= *3 *6=18

№5 (13 нұсқа №27)Конустың көлемі 9 см3 Егер оның осьтік қимасы тең қабырғалы үшбұрыш болса, конустың биіктігін табыңыз. V= R2H V=9 см3 9 см3 = R2H

R=x, CB=2x CH2=4x2-x2=3x2 CH= x *x2* x=9 X3=27 X=3 CH= x=3

№6 (25 нұсқа №11) Осьтік қимасы тең бүйірлі тік бұрышты үшбұрыш болатын конус берілген. Тік бұрышты үшбұрыштың гипотенузасы 6 см-ге тең болса, бүйір бетінің ауданын табыңыз. AB=6

R=3 H=3 L2=H2+R2 L2=(3 )2+(3 )2 L2=36 L=6 Sб.б= RL

Sб.б= *3 *6=18
2004 ж№7( 5 нұсқа №30) Конустың жасаушысы табан жазықтығына 300бұрыш жасай көлбеген және 8 см-ге тең. Осьтік қимасының ауданын табыңыз. <CAH=300 AC=8 см SABC-? SABC= AB*CH CH= AC CH= *8=4 AH2=AC2-CH2 AH2=64-16=48 AH=4 AB=8 SABC= AB*CH= *8 *4=16



№8 (13 нұсқа №30)Тең бүйірлі тік бұрышты үшбұрыш өзінің катетінен айналдырылған. Гипотенузасы 3 см-ге тең болса, шыққан конустың көлемін табыңыз.

AC=3 см

AC2=AH2+CH2

2AH2=18 AH2=9 AH=3 V= R2H V= *32*3=9

№9(19 нұсқа №30)Конустың биіктігі 15cм, ал көлемі 320 см3. Табанының радиусын табыңыз. V= R2H V=320 см3 H=15см R2 *15=320 R2=64 R=8

2009ж №10( 1 нұсқа №25)Жасаушысы L-ге, ал табанының радиусы R-ге тең конус берілген. Бір жағы конус табанында, ал қарсы жатқан жағының төбелері оның бүйір бетінде жататын конусқа іштей сызылған кубтың қырын табыңыз.

PB=L BK=R, R-төртбұрышқа сырттай сызылған шеңбердің радиусы

a-? a-төртбұрыштың қабырғасы a= R H=

1- a ( a= a=

№11( 3 нұсқа №18)Конустың осьтік қимасы тең бүйірлі үшбұрыш, бүйір қабырғасы 16 см, ал арасындығы бұрышы 1200 болса, толық бетінің ауданын табыңыз.

AC=16 см, <C=1200 Sт.б-? Sт.б= R(R+L)

АВ2=AC2+BC2-2AC*BC*cos1200 AB2=162+162+2*16*16* =768 AB=16 R=AB:2 R=8 Sт.б= R(R+L)= *8 (8 +16)=64 (3+2 )

№12(4 нұсқа №18) Тік конустың жасаушысы 6 см-ге тең және табан жазықтығына 600бұрыш жасай көлбеген. Толық бетінің ауданын табыңыз.

AC=6 см, <A=600

Sт.б-?

Sт.б= R(R+L) AH=6* =3 см Sт.б= *3*(3+6)=27

2010ж №13 (8 нұсқа №25) Конустың биіктігі 20-ға, табанының радиусы 25-ке тең. Конустың төбесі арқылы өтетін және конустың табанының центрінен қашықтығы 12 см-ге тең боатын қиманың ауданын табыңыз. SO=20 см, KO=25 см, PO=12 см SSKL= SP*KL SEO; SE=

SPO; SO2=SE*SP SP= SO2:SE SP=400:16=25 KPO; KP= SSKL= SP*KL= *25*20=500

№14 (11 нұсқа №25) Пирамиданың табаны-қабырғасы а-ға , сүйір бұрышы -ға тең ромб. Пирамидаға жасаушысы табан жазықтығымен бұрыш жасайтын конус іштей сызылған. Конустың көлемін табыңыз.

<A= <SAO= V= Sтаб *SO =sin h=a sin r= h= a sin

SO= sin tg Sтаб= r2= ( a sin )2

V= *( )2a2sin2 * sin tg = sin3 tg

№15 (16 нұсқа №25) Конустың биіктігі 3 см, табанының радиусы 5 см.



Төбесі арқылы өтетін биіктігімен 300жасайтын қиманың ауданын табыңыз.

SO=3 см R=5 см. <PSO=300 SSKL= KL*SP SP=2PO

SP=2x, PO=x SO2=SP2-PO2 3x2=27 X2=9 X=3

SP=6, PO=3 KP= =4 KL=2KP=8

SSKL= KL*SP= *8*6=24 см2

№16 (19 нұсқа №25) Конустың биіктігі 4 см. Конус бүйір бетінің жазбасының центрлік бұрышы 1200.Конустың көлемін табыңыз. CH=4

= L=3R H= H=2R 2R =4 R=2

V= R2H V= *22*4 =

№17 (21 нұсқа №24) Конустың бүйір бетінің ауданы табанының ауданынан 2 есе артық болса, жазбасының бұрышын радианмен табыңыз.

Sб.б= RL

Sб.б=2Sтаб

RL=2 R2

L=2R = =1800

№ 18 (16 нұсқа №25) Конустың көлемі V –ға тең. Конусқа іштей сызылған дұрыс төртбұрышты пирамиданың көлемін табыңыз. V= R2H H= Vпир= Sтаб*H

R-төртбұрышқа сырттай сызылған шеңбердің радиусы

a-төртбұрыштың қабырғасы a= R Sтаб=a2=( R)2=2R2

Vпир = Sтаб*H= *2R2*H= *2R2* =

№19 (17 нұсқа №25) Радиусы 6 см-ге тең жарты дөңгелек конусқа айналдырылған. Кoнустың көлемі неге тең? С= R=6 H= H=

C=2 R 2 R=6 R=3 V= R2H= *9*3 =9

№20 (20 нұсқа №18) Конустың осьтік қимасы тік бұрышты үшбұрыш.P=16(2+ ) , толық бетінің ауданы неге тең? AC=BC=L, AB=2R AC2+BC2=AB2 2L2=4R2 L= R P=2R+2L 2R+2L=16(2+ ) R+L=8(2+ )

R+ R=8(2+ ) R(1+ )=8 (1+ ) R=8

L= *8 =16

Sт.б= R(R+L)= *8 *(8 +16)= *8 *8 (1+ )=128 (1+ )

№21 (2003ж. 2 нұсқа №27) Қиық конустың табан радиусы 7 м және 4 м. Жасаушысы табанына 600бұрышпен көлбеген.Жасаушысын табыңыз. OC=4 м.

ND=7 м <D=600 DC-? DH=DN-HN=7-4=3м =cos600
DC=3: =6м

№22 (18 нұсқа №11)Қиық конустың табанының диаметрі 3м, 6м, биіктігі 4 м. Жасаушысын табыңыз. AD=6, BC=3, CH=4, DC-? HD= (AD-BC)= *(6-3)=1,5

DC2=CH2+HD2 DC2=16+2,25=18,25 DC=

№23 (23 нұсқа №26) Қиық конустың табанының радиустары 10 см және 4 см, ал жасаушысы табан жазықтығына 450 бұрыш жасай көлбеген. Конустың осьтік қимасының ауданын табыңыз. ND=10, OC=4, <D=450 SABCD-?

HD=ND-OC=10-4=6 HD=CH=6

S= (AD+BC) *CH= (20+8)*6=84

№24 (2009ж 10 нұсқа №25)Конустың көлемі 375 см3. Биіктігі 5 см.Конус төбесінен 2 см қашықтықтан өтетін және де оның табанына параллель жазықтық қияды. Пайда болған қиық конустың көлемін табыңыз.

V=375 см3 H=5 см. SC=2cм Vқиық кон-?

V= R2H R2*5=375 R2=225: R= CN=x

x=

V= H(r2+R2+R*r)= *3*( )=351 см2

 

Мазмұны:

І бөлім Жазықтықтардың қасиеттері

ІІ бөлім. Пирамида

ІІІ бөлім Параллелепипед

ІҮ бөлім Куб

Ү бөлім Призма

ҮІ бөлім Шар

ҮІІ бөлім Цилиндр

ҮІІІ бөлім Конус






Date: 2015-12-10; view: 3964; Нарушение авторских прав

mydocx.ru - 2015-2019 year. (0.016 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию