Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Лінії та поверхні рівня
Означення 2.1. Змінна величина Z називається функцією двох змінних x і y, якщо кожній парі чисел (x, y) (або кожній точці М(x, y)) з деякої множини D площини xOy ставиться у відповідність визначене значення змінної Z. Позначається Z = f(x, y) або Z = f (M).
Наприклад. 1) Площа прямокутника S = xy є функцією двох змінних x і y – довжин відповідних сторін; 2) Об'єм конуса V = 1/3 p R2h – функція радіуса основи R і висоти h.
Означення 2.1. узагальнюється на більшу кількість змінних.
Означення 2.2. Змінна Z називається функцією незалежних змінних x1, x2 , … xn з деякої множини D, що належить n -вимірному простору Rn, якщо кожній точці М(x1, x2 , … xn) Z = f (M) = f (x1, x2 , … xn). Наприклад: 1) Температура Т в даній точці М залежить від її координат x, y, z, а також від моменту часу t, в який вона вимірюється, тобто T = f (x, y, z, t). 2) Очікуваний прибуток Р від споруджуваного промислового об'єкта є функцією затрат на його будівництво, часу t від початку будівництва до початку випуску продукції, від величини попиту Q на цю продукцію та інших економічних факторів.
Означення 2.3. Множина D точок, в яких функція визначена називається областю визначення або областю існування функції, а множина Е, яка складається із значень функції, називається множиною значень функції f (M). У випадку n = 2 функція двох змінних Z = f (x, y) може розглядатися як функція точки площини в тривимірному просторі R3. Графіком функції Z = f (x, y) є геометричне місце точок (x, y,) f (x, y)), яке описує деяку поверхню в просторі R3. Приклад 2.1. Знайти область визначення і множину значень функції .
Рис 2.1
Приклад 2.2. Знайти область визначення поданих функцій: 1) 2) 3) 4). 1). Розв’язання для 1. Нагадаємо, що елементарна функція 2. Складаємо аналогічну нерівність для заданої функції двох змінних: (1) 3. Замінимо останні нерівності рівняннями, отримаємо рівняння границі області визначення: х=2 – пряма, перпендикулярна осі ОХ, у=1 – пряма, перпендикулярна осі ОУ. Будуємо їх в системі ХОУ (див. рис. 2.2) 4. Відносно прямих х=2 і у=-1 вибираємо ті частини площини ХОУ, де виконуються нерівності (1) або (2).
Рис. 2.2.
2). Розв’язання для функції 1. Елементарна функція однієї змінної y=lg x визначена, якщо x>0. 2. Аналогічна нерівність для функції
3. Замінимо в (3) нерівність рівнянням: 4. Пробна точка О(0;0) задовольняє нерівність (3)
Отже, О(0;0) належить області розв’язків нерівності (3). Тобто вся область визначення – це множина точок, які лежать у середині заданого круга, виключаючи границю
Рис 2.3
3) Розв’язання для функції 1. Відповідною елементарною функцією однієї змінної є 2. Аналогічна нерівність для функції
3. Замінивши нерівності на рівняння, отримаємо дві параболи 4. Пробна точка О(0,0) задовольняє ліву а також і праву нерівності (4)
Тобто початок координат знаходиться нижче першої параболи
Рис. 2.4 4) Розв’язання для функції 1. Відповідна функція однієї змінної 2. Для функції
3. Рівняння
півосі цього еліпса
4. Пробна точка О(0,0) нерівність (5) не задовольняє, бо нерівність
Рис 2.5
Приклади для самостійного розв’язання: Знайти область визначення функції: 1. 4. Відповіді. 1. Множина точок, які розміщені між віссю ОУ вище вітки параболи 3. Множина точок Означення 2.4. Лінією рівня функції Z = f (x, y) називається лінія f (x, y) = С на площині xOy, в точках якої функція має стале значення Z = C.
Означення 2.5. Поверхнею рівня функції U = f (x, y, z) називається поверхня f (x, y, z) = С, в точках якої функція має стале значення U = C. Приклад 2.3. Знайти лінії рівня функції
Рівняння ліній рівня (C > 0). Якщо С приймає дійсні значення, то отримуємо концентричні кола з центром в точці О(0,0), радіуса Зауважимо, що за допомогою ліній рівня f (x, y) = С можна побудувати поверхню Z = f (x, y) (рис. 2.2)
Рис. 2.6. Основними способами задання функції двох змінних є такі: 1) аналітичний, тобто за допомогою аналітичного виразу(формули); 2) табличний, за допомогою таблиці з двома входами, де кожній парі чисел
3) графічний, графіком функції двох змінних може бути деяка поверхня Date: 2015-12-10; view: 1091; Нарушение авторских прав |