Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Стандартная задача. Найти математическое ожидание, дисперсию и среднее квадратичное отклонение дискретной случайной величины





 

Найти математическое ожидание, дисперсию и среднее квадратичное отклонение дискретной случайной величины, зная закон ее распределения

x │ -1 │ 2 │ 1

 

p │ 0,2 │ 0,4 │ 0,4

 

1. Условие задачи

а) x – дискретная случайная величина.

б) x1 = -1, x2 = 2, x3 = 1

в) р1 = 0,2, р2 = 0,4, р3 = 0,4

 

г)x│ -1 │ 2 │ 1

р │ 0,2 │ 0,4 │ 0,4

 

д) Найти математическое ожидание М (x), дисперсию Д (x) и среднее квадратичное отклонение σ(x).

2. Решение задачи

а) М (x) = x1p1 + x2p2 + … +xnpn

M (x) = -1 · 0,2 + 2 · 0,4 + 1 · 0,4 = -0,2 + 0,8 + 0,4 = 1,0

 

Д (x) = М (x2) – М2 (x)

М (x2) = x12p1 + x22p2 + … + x2npn

M (x2) = 1 · 0,2 + 4 · 0,4 + 1 · 0,4 = 0,2 + 1,6 + 0,4 = 2,2

Д (x) = 2,2 - (1,0)2 = 2,2 - 1,0 = 1,2

___

σ(x) = √1,2 = 1,1

3. Ответ задачи

а) М (x) = 1,0; Д (x) = 1,2, σ (x) = 1,1

б) Среднее значение случайной величины равно 1,0. Дисперсия равна 1,2. Среднее квадратическое отклонение от среднего значения равно 1,1.

 

Стандартная задача 2

 

Дисперсия случайной величины x равна 0,3. Найти дисперсию следующих величин: а) 2x – 1; б) -3x + 2; в) -4x.

1. Условие задачи

а) x – дискретная случайная величина

б) Д (x) = 0,3

в) Найти Д (2x – 1), Д (-3x + 2); Д (-4x)

2. Решение задачи

а) Используем свойства дисперсии

Д (С) = 0, Д (Сx) = С2Д (x), Д (x1 + x2) = Д (x1) + Д (x2)

б) Д (2x – 1) = Д (2x) – Д (1) = 4 · Д (x) – Д (1) = 4 · 0,3 – 0 = 1,2

Д (-3x – 2) = Д (-3x) + Д (2) = 9 · Д (x) + Д (2) = 9 · 0,3 + 0 = 2,7

Д (-4x) = (-4)2 · Д (x) = 16 · 0,3 = 4,8

3. Ответ задачи

Д (2x – 1) = 1,2

Д (-3x + 2) = 2,7

Д (-4x) = 4,8

 

Литература

1. А. И. Карасева, З. М. Аксютина, Т. И. Савельева. Курс высшей математики для экономических вузов. М., 1982, стр. 37-58.

Задачи

 

11.1.Игральная кость брошена три раза. Написать закон распределения числа появления шестерки.



11.2 Найти математическое ожидание дискретной случайной величины, зная закон ее распределения:

х
р 0,4 0,35 0,25

 

11.3.Даны две случайные величины

x │ 1 │ 2 у │ 0,5 │ 1

       
   
 
 


p │ 0,7 │ 0,8 р │ 0,8 │ 0,7

Найти математическое ожидание величины 2x + 3y

11.4. Случайные величины x, y, z независимы. Найти математическое ожидание случайной величины x + 4y - 8z, если М (x) = 3, М (y) = 7, М (z) = 1.

11.5. Случайные величины x, y независимы. Найти дисперсию случайных величин x + 5y и 3x + 6, если Д (x) = 2, Д (y) = 6.

11. 6.Дисперсия случайной величины x равна 5. Найти дисперсию следующих величин: а) x – 1; б) -2x; в) 3x + 6.

11.7. Случайная величина задана законом распределения

х
р 0,4 0,5 0,1

Найти среднее квадратичное отклонение.

11.8.. Независимые случайные величины Х и У имеют следующие распределения.

 

Х 1 У -1 1 5
Р 0.3 0.5 0.2 Р 0.6 0.2 0.2

Найти закон распределения случайной величины: Z =3X + Y, М(Z) и Д (Z).

11.9. Возможные значения случайной величины таковы: x1 = 2, x2 = 0, x3 = 3. известны вероятности первых двух возможных значений р1 = 0,4, р2 = 0,15. Составить закон распределения дискретной случайной величины x и найти её числовые характеристики.

11.10. На животноводческой ферме было осуществлено контрольное взвешивание стада свиней из 100 голов. Получены следующие результаты: 40 % имеют массу 55 кг, 26 % - 60 кг, 14 % - 65 кг и 20 % - 70 кг. Определить дискретную случайную величину, характеризующую варьирующий признак - массу животного, записать ее ряд распределения и найти среднюю массу животных, содержащихся на этой ферме.

11.11. На опытном поле случайно выбирают колоски ржи и подсчитывают число зерен в колосе. Из 10 отобранных колосьев в 5 было 12 зерен, в 4-х по 20 и в одном по 26. Определить дискретную случайную величину и составить ряд распределения и найти её основные числовые характеристики.

11.12. На ферме было произведено контрольное взвешивание телят. Были получены следующие результаты: 20 % телят имели массу около 300 кг, 30 % приблизительно 250 кг, 10 % - 200 кг, 15 % - 180 кг и 25 % - 160 %. Записать закон распределения случайной величины, характеризующий варьирующий признак - масса телят. Найти математическое ожидание массы телят, дисперсию и среднее квадратичное отклонение от нормальной массы.

11.13. Случайная величина x, характеризующая варьирующий признак - вес зерна из некоторой пробы имеет следующий ряд распределения:

x │30 │ 40 │ 50 │ 60

 

p │0,1 │ 0,4 │ 0,3 │ 0,2

Найти математическое ожидание веса зерна и его среднее квадратическое отклонение от среднего значения.

11.14. Математическое ожидание массы одного помидора М (x) равно 0,1 кг. Математическое ожидание числа помидоров на кусте М (y) равно 18, а математическое ожидание числа кустов на участке М (z) равно 150. Найти математическое ожидание суммарного урожая с участка.



11.15. Из снимаемых помидоров 20 % имеет массу 60 г, 40 % - 70 г, 30 % - 30 г,

10 % - 90 г. За неделю с 30 % всех кустов снимают по 3 помидора, с 50 % всех кустов - по 4 помидора, с 20 % по 5. Сколько всего кг помидоров будет снято за неделю с участка, на котором имеется 200 кустов?

11.16.Написать закон распределения дискретной случайной величины Х – числа появлений «герба» при трёх бросаниях монеты. Записать функцию распределения и начертить её график.

11.17. Вероятность поражения стрелком мишени приодном выстреле равна 0,8. Написать закон распределения дискретной случайной величины Х – числа поражения мешени стрелком при четырех выстрелах. Записать функцию распределения и начертить её график.






Date: 2015-10-19; view: 3712; Нарушение авторских прав

mydocx.ru - 2015-2019 year. (0.008 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию