Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Производственная функция Кобба-Дугласа





Будем считать, что для рассматриваемой экономической системы определён частный случай производственной функции – производственная функция Кобба-Дугласа, которая имеет вид

Y = C K L1- , (3.5)

где С – масштабный множитель.

Легко показать, что эта функция удовлетворяет всем свойствам неоклассической производственной функции, – коэффициент эластичности выпуска по капиталу (0 < < 1), а (1– ) – по труду.

Рассмотрим основные показатели эффективности производства производственной функции Кобба-Дугласа.

Средняя фондоотдача и средняя производительность труда определятся из соотношений

AyK = Y/K = C (L/K)1- , AyL = Y/L = C (K/L) . (3.6)

Предельная фондоотдача и предельная производительность труда определяются из соотношений

Мyk = Y/ K = C K -1L1- = C (L/K)1- ; (3.7)

МyL = Y/ L = (1- )C K L- = (1– ) C (K/L) . (3.8)

Из (3.7) и (3.8) следует, что

Мyk = Ayk, Мyl = (1– ) AyL.

С учётом 0 < < 1 видим, что (как и в общем случае) предельный продукт фактора всегда меньше среднего (закон убывающей эффективности факторов).

Эластичность выпуска по капиталу и труду определяется из соотношений

= Мyk / Ayk, 1– = МyL / AyL. (3.9)

Изменение выпуска производимого продукта при одновременном изменении объёмов затрачиваемых факторов определится из соотношения

Y(K+ K,L+ L) Y + (Y/K) K + (1– ) (Y/L) L. (3.10)

Пример 3.1. Пусть производственная система характеризуется производственной функцией Кобба-Дугласа. За период времени системой было произведено 100 единиц продукции при затратах 20 единиц труда и 40 единиц капитала. Известно, что = 0,75.

1. Записать производственную функцию Кобба-Дугласа.

2. Сколько единиц продукта будет произведено системой при затратах 25 единиц труда и 50 единиц капитала?

3. Определить для данной производственной системы средние продукты труда и капитала

4. Определить предельные продукты труда и капитала.

5. Проверить вычислениями равенства (3.10).

Решение

1. Подставим в (3.5) исходные данные: 100 = С*400.75*200.25. После вычислений получим: 100 = С*33,64 или С = 100/33,64 = 2,973. Окончательно имеем: Y = 2,973 K0,75L0,25.

2. Подставим в полученное выражение для производственной функции новые данные: Y = 2,973*500,75*250,25 = 125. Таким образом, системой при новых данных будет произведено 125 единиц продукта.

3. Подсчитаем средние продукты факторов, используя формулы (3.6). AyK = 100/40 = 2,5. И AyK = 2,973* (20/40)0,25 = 2,5;

AyL = 100/20 = 5. И AyL = 2,973*(40/20)0,75 = 5.

Как видим, проверяемые равенства выполняются точно, если при вычислениях не производить округления.

4. Рассчитаем предельный продукт капитала: МyK = C (L/K)1- = 0,75*2,973*(20/40)0,25 = 1,875. Получили, что действительно МyK = Ayk (Мyk = 0,75*2,5 = 1,875).

Аналогично предельный продукт труда МyL = (1– ) C (K/L) = 0,25*2,973*20,75 = 1,25 или МyL =(1– ) AyL = 0,25*5 = 1,25.

Сравнивая средние и предельные продукты факторов, видим, что действительно, предельные продукты меньше средних, подтверждая тем самым закон убывающей эффективности факторов.

Средний продукт капитала, равный 2,5, означает, что в рассматриваемой экономической системе на единицу основных фондов приходится в среднем 2,5 единиц выпускаемого продукта, а предельный продукт капитала, равный 1,875, означает, что в экономической системе на единицу прироста основных фондов приходится в среднем 1,875 единиц прироста выпуска продукта. Аналогично и по продукту труда.

5. Пусть левая часть выражения (3.10) – это выпуск, подсчитанный в п. 7.2 при K = 10, а L = 5. Подсчитаем правую часть выражения (3.10):

Y + (Y/K) K + (1– ) (Y/L) L = 100 + 0,75*(100/40)*10 + 0,25* (100/20)*5 = 125. Как видим, равенство выполнено точно.

 







Date: 2015-10-18; view: 626; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.008 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию