Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Основные правила вычисление производной
1.) Постоянный сомножитель можновыносить за знак производной и дифференциала:
2.) Если ф-ции u и v дифференцируемы в (.) х0, то их алгебраическая сумма 3.) Если ф-ции u и v дифференцируемы в (.) х0, то их произведение Док-во: Дадим х0 приращение Разделим полученное равенство на Перейдём к пределу при
Найдём дифференциал: 4.) Если ф-ции u и v дифференцируемы в (.) х0, то их частное Ф-ция f ставит в соответствие числу х число у, а ф-ция φ – числу у число z. Говорят, что ф-ция h есть сложная ф-ция, составленная из ф-ций φ и f, и пишут: h(х)=φ(f(x)). Пусть дана ф-ция у=φ(t), где t=f(x). Если ф-ция t=f(x) дифференцируема в (.) х0, а ф-ция у=φ(t) - дифференцируема в (.) t0=f(х0), то сложная ф-ция у=φ(f(x)) дифференцируема в (.) х0, причём её производная Пр: y=cost, где t=x2-3x Неявной ф-цией у от х наз. ф-ция, представленная уравнением: F(x,y)=0. Т: Пусть F(x,y) и обе её частные производные Задание ф-ции системой: Пусть ф-ция задана параметрически, тогда выполняются 2 условия: 1] х=φ(t)- непрерывна на [a,b] 2] у=ψ(t)- непрерывна на [a,b] МЕТОДИКА 7. Тема: «Правила вычисления производных» Данная тема изучается в 10 классе (по учебнику «Алгебра и начала анализа 10-11 кл.» под ред. Алимова Ш.А.) и в 11 классе (по учебнику «Алгебра и начала анализа 10-11 кл.» под ред. Колмогорова А.Н.). На изучение данной темы отводится 2-3 часа. Ранее изученный материал, необходимый для изучения данной темы: приращение функции, понятие производной. Применение: исследование функций с помощью производной для построения графиков, производная сложной функции, в физике и т.д. Материал темы. Правила дифференцирования: 1. Производная суммы (разности) равна сумме (разности) производных (f(x)±g(x))'=f'(x)±g'(x) 2. Постоянный множитель можно выносить за знак производной: (C·f(x))'=C·f'(x) 3. Производная произведения: (f(x)·g(x))'=f'(x)·g(x)+f(x)·g'(x) 4. Производная частного: В учебниках Башмакова и Колмогорова все эти формулы выводятся, каждый шаг объясняется. Учебник Алимова содержит доказательства только двух первых формул, но к каждой формуле есть по 1-2 примера. В учебнике Колмогорова рассматривается формула производной сложной функции (гл 2, §16): f(g(x))' = f '(g(x))·g'(x) Сначала автор дает определение сложной функции, затем выводит формулу и приводит несколько примеров нахождения производной сложных функций. Алимов решил упростить данный раздел, заменив формулу сложной функции на ее частный случай – линейную замену аргумента: (f(kx + b))' = kf '(kx + b) Эта формула гораздо менее емкая, зато ее доказательство короче и менее абстрактно. Башмаков же включил в учебник обе формулы. Цели изучения:
Виды самостоятельных работ с точки зрения организации процесса обучения: 1. фронтальная – учащиеся выполняют одно и то же задание; 2. групповая – для выполнения учебных заданий учащиеся разбиваются на группы (3-6 человек); 3. парная – 2 человека; 4. индивидуальная – каждый ученик выполняет отдельное задание.
Дидактические материалы Вариант 1
а) f(x)=2x7+ 4 2. Вычислите производную функции f(x)=2x2+x3 в точках 2; 4; х; х-3. 3. Решите неравенство f'(x)≤0, если f(x)=4x+2x2. 4. Найдите производную функции f(x)=50x5+5x50 в точках х и -1. 5. Решите уравнение f'(x)=0 и неравенства f'(x)>0 и f'(x)<0 для функции: а) f(x)=x2+3x-3; б) f(x)= Вариант 2
а) f(x)=x5-2 2. Вычислите производную функции f(x)=3x+4x3 в точках 1; 1,5; х; х+2. 3. Решите неравенство f'(x)>0, если f(x)=6x-3x2. 4. Найдите производную функции f(x)=100x10-10x100 в точках х и 1. 5. Решите уравнение f'(x)=0 и неравенства f'(x)>0 и f'(x)<0 для функции: а) f(x)=x2-3x+1; б) f(x)= Тема урока «Правила вычисления производных» Цели урока:
Тип урока: урок закрепления знаний. Работа в группах. Все учащиеся класса разбиваются на 3 группы по своим учебным способностям. Группа № 1 получает карточки с I вариантом; № 2 – со II вариантом; № 3 – с III вариантом. В классе стоят столы. За стол № 1 садятся ученики, у которых будут все 3 варианта. И так за каждый собирается группа из 3 человек с разными вариантами с I по III. Каждый ученик в течение 15 минут работает самостоятельно с карточкой своего варианта. После выполнения работы ученики перемещаются так, чтобы за столом №1 собрались ученики, у которых был I вариант, за столом № 2 – II вариант и т.д. На каждый стол выдается конверт, в котором находятся ответы к данному варианту и контрольный лист с критериями оценок. Учащимся отводится время (5-7 минут) для проверки своего решения, разбора в группе своих ошибок и их исправления, выставления оценок. Примеры карточек по вариантам
Билет № 8. «Ряды». Возьмём бесконечную числовую послед-ть х1, х2, …, xn,…. Члены данной послед-ти соединим знаком «+», тогда получим выражение (*) х1+х2+ …+xn+…. = Составим послед-ть частичных сумм ряда: Суммой ряда наз. конечный предел послед-тей частичных сумм: (Необходимый признак сходимости) Если ряд сходится, то его общий член стремится к нулю, т.е. Док-во: Т.к. ряд сх-ся, то
Следствие: если общий член не стремится к нулю, то ряд Признаки сравнения числовых рядов (достаточные признаки): Т1: Пусть даны два ряда: (1) Т2: Пусть даны два ряда: (1) Т3: (признак Д’Аламбера) Пусть дан ряд Док-во: Н/р,рассмотрим при q>1 Т4: (радикальный признак Коши) Пусть дан ряд Т5: (интегральный признак Коши) Пусть дан ряд Пусть дан знакочередующийся ряд (1) Т Лейбница: Пусть в ряде (1) члены по модулю убывают Док-во: Рассмотрим суммы ряда (1) с чётными индексами:
Докажем, что послед-ть частичных сумм
Докажем, что послед-ть частичных сумм с нечётными индексами имеет тот же самый предел:
Пр: Ряд (2) Т: Если знакопеременный ряд (2) таков, что ряд (3) Знакопеременный ряд (2) наз. абсолютно сходящимся, если он сходится, и ряд по модулю (3) тоже сходится, и обратно, если сходится ряд (3), то ряд (2) наз. абсолютно сходящимся. Знакопеременный ряд (2) наз. условно сходящимся, если он сходится, а ряд по модулю (3) расходится. Пр: (п3) МЕТОДИКА 8. 1) Логико-математический анализ темы Логико-математический анализ темы: Геометрическая прогрессия (по учебнику Алгебра 9 класс под ред. Ш.А Алимова, Ю.М.Колягина) Date: 2015-10-18; view: 1666; Нарушение авторских прав |