Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Приведение эрмитовой формы унитарным преобразованием координат
Теория эрмитовых форм в унитарном пространстве аналогична теории квадратичных форм в евклидовом пространстве (см. п.25). Пусть Нп унитарное пространство с ортонормированным базисом и, F(x) – эрмитова квадратичная форма с матрицей в базисе и и f(x,у) – соответствующая эрмитова полуторалинейная форма с матрицей = . Рассмотрим линейный оператор j с матрицей = . Так как матрица - эрмитова, то j - эрмитов оператор, j* = j. По теореме о структуре эрмитова оператора в Нп существует ортонормированный базис и¢, в котором матрица оператора j диагональна: = diag(l1,l2,…,ln), причем все liÎ R. Пусть Т = . Тогда Т – унитарная матрица (так как по столбцам матрицы Т стоят координаты векторов из ортонормированного базиса и¢), и, значит, Т -1= . Но . Пусть Т1= . Тогда = diag(l1,l2,…,ln) = Т -1 Т = Т = = = - диагональная матрица, причем - ортонормированный базис. Следовательно, если в базисе вектор у имеет координаты (y1,…,yn), то форма F имеет канонический вид F(у)=l1 | y1 | 2+l2 | y2 | 2+…+ln | yn | 2, причем все liÎ R. Соответственно, если в этом базисе вектор z = (z1,…,zn), то f(y, z) = l1y1 + l2y2 + …+ lnyn . Таким образом, нами доказана Теорема. Для любой эрмитовой квадратичной формы F(x) в унитарном пространстве Нп существует ортонормированный базис , в котором форма F имеет канонический вид F(у) = l1 | y1 | 2+ l2 | y2 | 2+…+ ln | yn | 2, причем все liÎ R. Это означает, что существует унитарная матрица Т1 перехода к новому базису , в котором матрица формы F диагональна: = = diag(l1,l1,…,ln), причем все liÎ R. Следствие 1. Эрмитовы формы F и f унитарно эквивалентны формам, имеющим канонический вид (см. п.24.5). Следствие 2. Две эрмитовы квадратичные формы канонического вида унитарно эквивалентны тогда и только тогда, когда их коэффициенты l1,l2,…,ln отличаются, может быть, лишь порядком. Следствие 3. Две эрмитовы квадратичные формы унитарно эквивалентны тогда и только тогда, когда их матрицы даже в различных ортонормированных базисах имеют одинаковые характеристические многочлены. Так как коэффициенты l1,…,ln формы F – это собственные значения линейного оператора j, то найти их можно, решая характеристическое уравнение для матрицы = , то есть уравнение det( -lE) = 0. Векторы базиса и¢ = {и¢1,…, и¢n} – это собственные векторы линейного оператора j, и найти все и¢i можно, решая однородные системы линейных уравнений ( - l iE) [ x ] = [ 0 ]. Различным собственным значениям соответствуют ортогональные друг другу собственные векторы, и, если dim Ker( - l iE) = 1, то найденный вектор необходимо лишь нормировать, то есть разделить на его длину. Если же имеются одинаковые собственные значения, то есть кратные корни li характеристического уравнения, то dim Ker( - l iE)> 1, и найденную фундаментальную систему решений для СЛУ ( - l iE) [ x ] = [ 0 ] необходимо ортонормировать, например, по Граму-Шмидту. Затем, после нахождения базиса и¢ надо перейти к базису , заменив все векторы и¢1,…, и¢n на «комплексно сопряженные». Date: 2015-09-25; view: 477; Нарушение авторских прав |