![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Глава 8. Экологическая биотехнология⇐ ПредыдущаяСтр 28 из 28
8.1. АЭРОБНАЯ БИОЛОГИЧЕСКАЯ ОЧИСТКА СТОЧНЫХ ВОД Бытовые и промышленные сточные воды представляют собой сложную смесь, в состав которой входят различные питательные вещества и самые разнообразные микроорганизмы, поэтому для обработки стоков необходимо такие большое количество различных протистов. Эти организмы конкурируют в потреблении питательных веществ, уничтожают друг друга и взаимодействуют многими другими путями, характерными для небольшой экологической системы. В сточных водах содержится сложная смесь твердых и растворенных веществ, причем последние обычно присутствуют в очень малых концентрациях. На очистных станциях концентрации всех этих веществ снижают до приемлемого уровня или же химически трансформируют вредные вещества в безопасные соединения. Конкретная схема очистной станции зависит от степени загрязненности и количества обрабатываемых стоков, а также от экономических и экологических соображений. Большая часть водоочистных станций, однако, имеет много общего, что позволяет изобразить общую схему системы водоочистки, как на рис. 8.2. Показанные здесь различные способы переработки ила и удаления загрязняющих веществ отражают разные возможные пути достижения одной и той же цели. В типичной станции по биологической очистке сточных вод используются лишь некоторые из множества возможных вариантов. Теперь перейдем к изучению общих задач и целей каждой из основных операций (или последовательностей нескольких операций). В операциях первичной обработки удаляют наиболее легко отделяющиеся загрязнения, например: крупные, легкоосаждающиеся частицы (см. рис. 8.1), масляные пленки и другие «легкие» компоненты. Суспендированные твердые частицы и растворимые компоненты отделяют в процессе вторичной обработки. Во многих случаях загрязняющие вещества имеют органическую природу; в таких случаях обычно используют биологическое окисление, которое мы рассмотрим детальнее чуть позже. Цель третичной обработки заключается в полном или частичном отделении всех оставшихся примесей. На этой стадии используются такие методы, как электродиализ, обратный осмос, фильтрование через толстый слой и адсорбция. В процессе первичной обработки отделяют влажные концентрированные твердые вещества, называемые илом; при вторичной обработке образуется активный клеточный ил. Мы неоднократно упоминали о взаимосвязи между утилизацией субстрата и образованием биомассы. Хотя процессы вторичной биологической обработки с участием множества видов микроорганизмов очень эффективны при деградации разбавленных смесей органических отходов, не следует забывать, что при этом образуется и биомасса. Таким путем очень мелкие нерастворимые частицы и растворенные компоненты жидких отходов частично превращаются в ил, который легче поддается отделению, чем исходные загрязняющие вещества. Установки для переработки ила являются важной составной частью станций по очистке сточных вод.
4 - - ЮОлтм Суспендированные частицы 5 -- Юмкм Надколлоидные час/пицы 6- - Ыкм Коллоидные частицы 7- - 0,1 мкм Субколлоидные частицы
Ю нм Растворенные вещества 04- 1нм кД 1А
Рис. 8.1. Отделение твердых частиц различной величины на различных стадиях очистки сточных вод Для уменьшения объема ила, образующегося при очистке воды, широко применяется операция анаэробной переработки, при которой органические вещества подвергаются биологической деградации в анаэробном окружении. Не следует думать, что во всех случаях используются все три уровня очистки сточных вод и переработки ила. Иногда сточные воды спускают в природные водоемы (ручьи, реки, пруды, озера и океан) без какой бы то ни было обработки. В других случаях применяют только первичную обработку. В то же время для большинства городских систем водоочистки та или иная форма вторичной обработки является обязательной, а третичная обработка в настоящее время применяется лишь изредка.
8.1.1. Основные характеристики сточных вод Понятно, что природа и концентрация загрязняющих веществ в сточных водах зависят от их источника. Существуют два основных вида сточных вод - промышленные и бытовые. Последние загрязнены главным образом уличным мусором, моющими средствами и экскрементами. Бытовые сточные воды обычно содержат более 99 % воды, около 300 млн-1(мг/л) суспендированных твердых веществ, а также около 500 мг/л летучих веществ. Большая часть суспендированных твердых веществ имеет целлюлозную природу, а другие загрязняющие органические вещества включают (в порядке убывания концентрации) жирные кислоты, углеводы и белки. Как мы уже упоминали при обсуждении процессов порчи пищевых продуктов, неприятный запах бытовых сточных вод обусловлен разложением белков в анаэробных условиях. Если учесть происхождение бытовых сточных вод, то не должен вызывать удивления тот факт, что в них содержатся различные виды почвенных и кишечных микроорганизмов, в том числе аэробные организмы, облигатные и факультативные анаэробы, бактерии, дрожжи, плесени и грибы. Поскольку в бытовых сточных водах часто присутствуют также патогенные организмы и различные вирусы, чрезвычайно важна полная изоляция источников и трубопроводов для подачи питьевой воды от загрязнения сточными водами. Популяции микроорганизмов в сточных водах служат постоянным смешанным посевным материалом для процессов биологической очистки и, кроме того, источником метаболической активности в стандартных методах определения степени загрязнения сточных вод. Наиболее распространенным критерием концентрации загрязняющих веществ в бытовых сточных водах является показатель биохимической потребности в кислороде (БПК), равный количеству растворенного кислорода, поглощаемого единицей объема сточных вод за определенное время при 20 °С. Продолжительность периода инкубации обычно указывают в виде подстрочного индекса; так, если БПК определяют по результатам инкубирования в течение пяти суток (один из принятых периодов), то соответствующий показатель обозначают символом БПК5. Количество растворенного кислорода, поглощаемого в ходе инкубации вплоть до полного прекращения биологического окисления органических веществ, называют предельной (или полной) БПК (БПКп). Этот тест, разработанный еще в 1898 г. Британской Королевской комиссией по ликвидации отходов, должен был моделировать условия в водных потоках и обеспечивать относительно прямое определение одного из наиболее вредных и опасных последствий сброса сточных вод - истощения растворенного кислорода в водных бассейнах, куда сбрасываются отходы. Снижение концентрации растворенного кислорода быстро приводит к гибели множества аэробных организмов, а также животных; конечным результатом истощения растворенного кислорода будет грязная, неприятно пахнущая река, зараженная патогенными микроорганизмами. Другим критерием потенциального снижения общей концентрации растворенного кислорода в водоемах, в которые поступают сточные воды, служит химическая потребность в кислороде (ХПК), равная числу миллиграммов кислорода, поглощаемого одним литром пробы (сточных вод) из горячего подкисленного раствора бихромата калия. В общем случае химическому окислению подвергается больше веществ, чем биологической деградации, и, следовательно, величина ХПК должна быть больше величины БПК для одного и того же образца. Измерение ХПК связано с возможной степенью загрязнения естественных водоемов сточными водами не столь непосредственно, как определение БПК; с другой стороны, ХПК можно определить с помощью доступной простой аппаратуры за 2 часа, а с помощью сложных приборов - за несколько минут. БПК и ХПК являются общими и самыми грубыми индикаторами состава сточных вод. Тем не менее они дают полезную информацию о степени опасности, которую представляют сточные воды для окружающей среды. Другим преимуществом показателей БПК и ХПК является возможность их определения с минимальным количеством несложной аппаратуры, причем выполнение соответствующих анализов требует лишь кратковременного обучения персонала. Чтобы охарактеризовать качество воды, часто применяют и другие параметры, в том числе концентрации фосфорсодержащих веществ (общего фосфора), азотсодержащих веществ (общего азота) и суспендированных нерастворимых веществ. Состав промышленных сточных вод определяется их происхождением. Стоки промышленных предприятий часто загрязнены в гораздо большей степени, чем бытовые сточные воды. В стоках промышленных предприятий, связанных с переработкой материалов углеводородной природы, часто содержатся и ядовитые вещества, например: формальдегид, аммиак или цианиды. Здесь возникают две взаимосвязанные проблемы: во-первых, эти стоки чрезвычайно опасны для живых организмов в водоемах, куда они сбрасываются, во-вторых, они могут убивать микроорганизмы, участвующие в аэробных и анаэробных процессах переработки отходов. Эффективные и достаточно экономичные методы обезвреживания подобных токсичных веществ пока еще не разработаны. 8.1.2. Процессы с участием активного ила В процессах с участием активного ила основным типом оборудования является проточный аэрируемый биологический реактор. Как показано на рис. 8.3, этот аэробный реактор (аэротенк) связан с отстойником, в котором вода осветляется. Часть ила, собирающегося в отстойнике, обычно вновь поступает в биологический реактор, в результате чего обеспечивается постоянная инокуляция илом. Кроме того, рециркуляция увеличивает среднее время пребывания ила в системе, давая таким образом возможность присутствующим в нем микроорганизмам адаптироваться к имеющимся питательным веществам. Ил должен оставаться в аэробном биореакторе достаточно долго и для того, чтобы окислились все адсорбированные органические вещества.
CycngtidvpotkHfHi>f£ 6 жидкости Втсричиый
Одним из наиболее типичных для активного ила организмов является бактерия Zoogloea ramigera. Возможно, наиболее важной характеристикой как этого организма, так и многих других видов, существующих в активном иле, является способность синтезировать и секретиро- вать в среду полисахаридный гель. Именно наличие геля обусловливает агрегацию микроорганизмов и образование хлопьевидных скоплений (флокул), называемых активным илом. Активный ил характеризуется высоким сродством к суспендированным твердым веществам, включая коллоидальные частицы. Именно это обстоятельство служит причиной того, что первой стадией разрушения суспендированных твердых частиц в сточных водах является их присоединение к флокулам. Затем, как это показано на рис. 8.4, способные к биодеградации компоненты Для того чтобы выгоднее использовать высокую адсорбционную способность активного ила, разработан вариант обычного процесса, называемый контактной стабилизацией. Как показано на схеме (см. рис. 8.5), в этом процессе рециркулирующий осажденный ил подвергается повторной аэрации прежде, чем он вступит в контакт с отходами, поступающими в аэрируемый резервуар. В последнем органические вещества связываются с флокулами практически исключительно за счет физических сил. Биологическая утилизация связанных органических веществ происходит в основном в процессе повторной аэрации рецир- кулирующего ила; одновременно восстанавливается адсорбционная способность флокул ила. Другие модификации процесса с участием активного ила отличаются от базового варианта главным образом способом осуществления контакта сточных вод, ила и воздуха в аэрируемом реакторе. Обычный аэротенк с активным илом представляет собой узкий длинный канал (коридор), который по своим характеристикам приближается к трубчатому реактору с незначительной дисперсией. Распределение поступающего потока по длине реактора изменяет характеристики системы таким образом, что коридорный реактор по своему поведению приближается к емкостному реактору с полным перемешиванием.
Еще ближе к реактору с полным перемешиванием бассейн круглой формы, содержимое которого интенсивно аэрируется с целью обеспечения массопереноса и перемешивания. В такой системе градиенты концентраций растворенного кислорода и питательных веществ минимальны, а развивающаяся популяция организмов активного ила часто лучше переносит флуктуации нагрузки или резкие повышения концентраций токсичных веществ. Помимо барботажа с перемешиванием, обычно используемого в микробиологических процессах, здесь возможно барботирование воздуха через диффузоры, расположенные на дне или в стенках резервуара. В другом варианте на поверхности бассейна вращается мешалка с лопастями, создающая турбулентные течения и способствующая поглощению газа. Третий вариант предусматривает перемешивание и аэрацию с помощью конуса, который забирает жидкость со дна бассейна и разбрызгивает ее на стенки резервуара. Во всех случаях основной задачей системы аэрации и перемешивания является снабжение кислородом микроорганизмов, суспендирование и перемешивание ила и других нерастворимых компонентов системы, а также удаление летучих продуктов метаболизма организмов ила, например СО2. С/тточнш
Зюи Очищенная Отстдибанив SsAx
рециркуляция i;/ia
Рис. 8.5. Схемы двух процессов биологического окисления: а) схема процесса со ступенчатой подачей стоков; б) схема процесса с контактной стабилизацией (реаэрацией ила) Помимо высокой адсорбционной и метаболической активности хороший ил должен также быстро оседать. Например, в цилиндре через 30 мин объем осевшего активного ила должен быть примерно в 40 раз больше объема суспендированных твердых компонентов. Если этот показатель намного выше и объем осевшего ила превышает объем суспендированных твердых частиц, например, в 200 раз, то такой ил не удо- влетворяет предъявляемым к нему требованиям, поскольку он будет вытекать из отстойника вместе с очищенными сточными водами. Такое состояние называют объемной перегрузкой; в этом случае обработанные сточные воды не будут отвечать соответствующим стандартам. Хотя причины, вызывающие объемную перегрузку, и механизм этого явления пока еще не выяснены, изучение неудовлетворительного ила часто показывает, что в нем содержатся филаментозные бактерии и жгутиковые простейшие. Напротив, хороший ил обычно не содержит многочисленных популяций филаментозных организмов, а из простейших в нем присутствуют главным образом стебельчатые ресничные виды. В процессе очистки воды эти простейшие выполняют полезную функцию, захватывая свободные, т. е. не включенные в флокулы, бактерии и таким образом осветляя обработанные сточные воды. В нормальных условиях эксплуатации очистных станций фила- ментозные бактерии и грибы не могут конкурировать с гетеротрофными бактериями, присутствующими в хорошем иле. Резкие изменения концентраций загрязняющих веществ в поступающих сточных водах или грубое нарушение режима эксплуатации системы водоочистки могут, однако, привести к условиям, неблагоприятным для роста полезных популяций, что, в свою очередь, позволит другим видам микроорганизмов занять доминирующее положение в системе. Отсюда следует, что результаты как объемной перегрузки, так и нормального режима работы системы водоочистки представляют собой проявления принципов конкуренции видов в смешанных популяциях. 8.1.3. Аэробная обработка ила Активный ил с большим содержанием биопродуктов, образующийся в рассмотренных выше процессах, часто подвергают еще одной операции аэробной обработки; фактически она повторяет описанную в предыдущих разделах, но в отсутствие поступления свежих сточных вод. В таких условиях биомасса в результате эндогенного дыхания утилизирует свои же источники углерода, так что в конечном счете содержание твердых компонентов уменьшается обычно на 50 %. В этой операции рециркуляцию биомассы не применяют, а время пребывания последней в реакторе составляет от 15-ти до 25-ти суток. Основной целью этой операции является уменьшение общей массы ила, подлежащего перевозке (сухопутным или речным транспортом) и уничтожению. Нитрификация В обычных процессах обработки отходов с аэрацией в числе подвергающихся биологическому окислению субстратов имеются и азотсодержащие органические вещества. Из последних при биологическом окислении обычно сначала образуется аммиак, который затем необходимо окислить до нитрита и, наконец, до нитрата; только в этом случае очищенная вода будет обладать достаточно низкой БПК. Для оценки концентраций аммиака и нитрита в сточных водах, прошедших обработку в системе водоочистки с активным илом (эффективность работы которой оценивают по снижению величины БПК до заданного уровня), за основу можно взять уравнения материальных балансов по популяциям Nitrosomonas и Nitrobacter. Ниже приведен пример такого расчета. Если время пребывания биомассы в системе с активным илом слишком мало, то для завершения процесса нитрификации можно использовать второй аэрируемый биореактор. 8.1.4. Вторичная очистка сточных вод с помощью капельных биологических фильтров В довольно распространенном варианте очистки сточных вод с участием активного ила применяют так называемые капельные, или перколяционные, биологические фильтры. В биологическом фильтре популяции микроорганизмов существуют в виде пленки или слизистого слоя на поверхности твердой насадки, неплотно заполняющей резервуар (доля пустот составляет около 0,5); в таких условиях воздух легко поступает в нижние слои насадки. Использование термина «фильтр» для описания этой системы водоочистки во многих отношениях неудачно, поскольку механизм обезвреживания примесей здесь связан не с их механическим удерживанием, а с теми же самыми последовательными процессами связывания и биологического окисления, которые реализуются в системах с активным илом. Подлежащие очистке сточные воды контактируют прежде всего с верхней частью неподвижного слоя, толщина которого составляет обычно от одного до трех м; сточные воды подают непрерывно через расположенные над неподвижным слоем насадки сопла или периодически с помощью вращающегося разбрызгивателя, подобного изображенному на рис. 8.6. И в том и в другом случае скорость потока сточных вод должна быть достаточно низкой, чтобы слой насадки не оказался под водой. Для обеспечения нужной скорости переноса кислорода поступающие в систему сточные воды должны обтекать покрытую слизью насадку достаточно тонким слоем, не препятствующим дыханию аэробных организмов, находящихся на наружной поверхности пленки микроорганизмов.
В отличие от процессов с участием активного ила, обычно требующих принудительной аэрации, через биологический фильтр воздух циркулирует благодаря естественной конвекции. Движущей силой конвекции является разность температур, создающаяся в фильтре за счет биологического окисления загрязняющих веществ, присутствующих в сточных водах; отверстия для поступления воздуха и связанные с ними вентиляционные трубопроводы (расположенные внутри фильтра) обеспечивают поступление воздуха в нижние и промежуточные слои насадки. Возникновение и развитие анаэробных областей в толще пленки микроорганизмов приведут к формированию газовых пузырьков, которые, в свою очередь, вызовут частичное отделение пленки от носителя. Образовавшиеся таким путем и унесенные из биологического фильтра потоком воды организмы часто называют гумусом; последний необходимо отделять в отстойнике, установленном непосредственно после биологического фильтра. С другой стороны, в результате этого процесса регулируется толщина пленки микроорганизмов, среднее значение которой зависит от множества факторов. В правильно эксплуатируемом биологическом фильтре толщина пленки микроорганизмов обычно составляет около 0,35 мм. Недостатком высоконагружаемых биологических фильтров является вымывание большого количества гумуса, который необходимо отделять в отстойнике. Для того чтобы понять принцип работы биологического фильтра, полезно проследить за происходящими в фильтре превращениями в пространстве и времени. Предположим, что мы перемещаемся внутри фильтра сверху вниз вместе с каплей жидкости. По мере движения через неподвижный слой насадки состав жидкости изменяется во времени, что обусловлено поглощением разных компонентов различными микроорганизмами. По мере изменения состава жидкой среды в ней поочередно развиваются преимущественно определенные виды микроорганизмов, что, в свою очередь, приводит к изменению ее состава и затем к замене одной доминирующей популяции другой. Теперь перенесем наблюдения в фиксированную в пространстве систему координат. То, что раньше представлялось нам как изменения в капле во времени, теперь будет иметь характер распределения в рабочем пространстве фильтра, эксплуатируемого в стационарном состоянии. Организмы, наиболее приспособленные к утилизации питательных веществ сточных вод, доминируют в верхней части слоя насадки; здесь же изобилуют прочно связанные с насадкой грибы и свободно плавающие ресничные. В нижней части фильтра преобладают стебельчатые ресничные и нитрифицирующие бактерии. Среди обитателей биологических фильтров можно обнаружить и высших животных, из которых наиболее многочисленны популяции червей и личинок насекомых. Эти животные питаются организмами слизистого слоя, растущими на насадке фильтра; регулирование численности их популяций является важным фактором при управлении работой фильтра. Разделение организмов в пространстве биологического фильтра позволяет каждому виду полностью адаптироваться к соответствующему окружению. По этой причине, в частности, низко нагружаемые биологические фильтры обычно обеспечивают большую прозрачность и большую степень нитрификации очищенной воды, чем системы с активным илом. Кроме того, опыт эксплуатации водоочистных станций показал, что по сравнению с системами с активным илом биологические фильтры менее чувствительны к пиковым нагрузкам токсичных веществ. В то же время, как показано в табл. 8.1, в некоторых отношениях системы с активным илом превосходят биологические фильтры. Предпочтение той или иной системе водоочистки можно отдать. только после тщательного изучения характеристик сточных вод.
Основой другого метода очистки сточных вод являются так называемые биологические пруды; этот метод очистки намного проще, чем водоочистка с помощью активного ила или биологических фильтров. В биологических окислительных прудах, напоминающих естественные водные экосистемы, в процессе фотосинтеза водоросли выделяют кислород; тем самым поддерживается аэробный режим, который необходим для бактерий, утилизирующих органические загрязняющие вещества. Для предотвращения образования анаэробных зон окислительные пруды обычно делают неглубокими, от 0,6 до 1,2 м глубиной. Напротив, в стабилизирующих прудах для обработки сточных вод, содержащих осаждающиеся примеси, поддерживается анаэробный режим или чередование во времени аэробного и анаэробного режимов. 8.2. АНАЭРОБНАЯ ПЕРЕРАБОТКА ОТХОДОВ Отходы, содержащие значительные количества ферментируемых органических соединений, можно подвергать биологической обработке в анаэробных условиях. Хотя анаэробная обработка применяется во многих процессах, основной сферой использования этого метода является переработка избыточного активного ила (см. рис. 8.3 и 8.5), образующегося при биологической очистке сточных вод. Как мы уже знаем из материала предыдущих разделов, концентрированный ил образуется на нескольких стадиях, в том числе при отделении твердых частиц на решетках и в первичном отстойнике, а также при росте микроорганизмов в ходе биологического окисления (при вторичной очистке сточных вод). Ил далее концентрируют или сгущают часто путем простой седиментации; ликвидации ила обычно предшествует операция анаэробной биологической переработки, являющаяся одним из этапов водоочистки. Механизм анаэробной переработки отходов, в котором участвует множество видов микроорганизмов, в самом общем и упрощенном виде можно описать следующей схемой: Нераств°римые солюбилизация внеклеточными Раств°римые ____________ ^ органические гидролитическими ферментами органические вещества вещества кислотообразующие ^ Бактериальная биомасса бактерии Другие продукты Летучие органические кислоты + СО2 + Н2 газификация метанобразующими бактериями СН4 + СО2 + бактериальная биомасса На первой стадии твердые частицы ила солюбилизируются или диспергируются внеклеточными ферментами, синтезируемыми самыми различными бактериями. В системах для анаэробной обработки ила обнаружены протеолитические, липолитические и некоторые целлюлоли- тические ферменты. Поскольку в биореакторах для анаэробной переработки ила твердые вещества не накапливаются, то, очевидно, реакции солюбилизации осуществляются достаточно быстро и эта стадия не лимитирует скорость всей последовательности превращений. Экспериментальное изучение следующей стадии анаэробной переработки ила, а именно микробиологического синтеза низкомолекулярных жирных и летучих кислот из растворенных органических веществ, показало, что скорость осуществляющихся на этой стадии реакций также довольно высока. По вполне понятной причине ответственные за эти превращения организмы называют кислотообразующими бактериями; они являются факультативными анаэробными гетеротро- фами и лучше всего функционируют в диапазоне рН от 4,0 до 6,5. Главным продуктом этой стадии является уксусная кислота, хотя в некоторых количествах образуются также пропионовая и масляная кислоты. Важнейшим субстратом для последней стадии процесса является уксусная кислота; показано, что около 70 % всего метана образуется именно из этого субстрата. Стадия газификации осуществляется с участием метанобразующих бактерий, являющихся облигатными анаэробами. Эти организмы проявляют наибольшую активность в гораздо более узком диапазоне рН (от 7,0 до 7,8); их сложно выделить в виде соответствующих чистых культур, но в адекватно эксплуатируемом биореакторе (метантенке) смешанная культура этих бактерий находит очень хорошие условия для своей жизнедеятельности. Имеющиеся данные свидетельствуют о том, что превращение летучих кислот в СН4 и СО2 лимитирует скорость всей последовательности превращений. На рис. 8.7 представлена схема аппарата для анаэробной переработки ила (метантенка). Для предотвращения чрезмерного повышения локальных концентраций кислот содержимое метантенка перемешивают. Создание условий, удовлетворительных как для кислотообразующих, так и для метанобразующих бактерий, обеспечивается поддержанием рН около 7. На рис. 8.7 указан также выносной теплообменник для поддержания повышенной температуры в резервуаре метантенка. В настоящее время в большинстве случаев температуру содержимого ме- тантенка поддерживают на уровне мезофильного диапазона (около 3238 °С), который обеспечивает максимальную скорость переработки ила. Имеются указания на то, что скорость процесса можно повысить в еще большей степени, если осуществлять его в термофильном диапазоне (около 55 °С). Впрочем, такой температурный режим применяют сравнительно редко; одной из причин предпочтения, отдаваемого мезо- фильному диапазону температур, является меньший расход энергии на нагревание метантенка. При эффективном перемешивании и средней температуре (32-35 оС) необходимое для полной переработки ила время его пребывания составляет от десяти до тридцати суток. При анаэробной переработке ила образуется топливо, которое можно использовать для снижения эксплуатационных расходов водоочистных станций. Иногда образующийся при анаэробной переработке ила метан используют вне водоочистной станции для выработки тепла и электроэнергии. Газовая смесь, образующаяся при анаэробной переработке ила и накапливающаяся, как это показано на рис. 8.7, в верхней части метантенка, состоит в основном из метана (65-70 %) и углекислого газа. В небольших концентрациях в этой смеси содержатся также сероводород (продуцируемый сульфатредуцирующими бактериями), Н2 и CO. В связи с повышением цен на топливо, однако, процессам анаэробной переработки ила как потенциальному источнику топлива (после обязательного удаления H2S) уделяется все большее внимание. В результате анаэробной переработки ил легче поддается последующим операциям. Во-первых, содержание органических веществ в иле снижается на 50-60 %. Во-вторых, существенные изменения претерпевают и концентрации других компонентов ила. После анаэробной переработки ил в гораздо меньшей степени подвержен гниению и легче обезвоживается. После обезвоживания (эту операцию часто осуществляют с помощью ротационного вакуум-фильтра) ил высушивают и затем используют в качестве удобрения, складируют или сжигают.
ЛИТЕРАТУРА 1. Воробьев А. А. Микробиология. - М.: Медицина, 2003. -464 с. 2. Шлегель Г. Общая микробиология. - М.: Мир, 1987. - 566 с. 3. Красильников А. П. Словарь-справочник микробиологический. - Минск, 1999. - 185 с. 4. Елинов Н. П. Основы биотехнологии. - СПб: Изд-во наука, 1995. - 600 с. 5. Бейли Дж., Оллис Д. Основы биохимической инженерии. В 2-х т.- М.: Мир, 1989. 6. Сассон А. Биотехнология: свершения и надежды. - М.: Мир, 1987. - 411 с. 7. Егоров Н. С. Основы учения об антибиотиках. - М.: Изд-во МГУ, 1994.- 512 с. 8. Уэбб Ф. Биохимическая технология и микробиологический синтез. - М.: Медицина, 1969.- 562 с. 9. Биотехнология: Учеб. пособие для вузов. В 8 кн./Под ред. Н. С. Егорова, В. Д. Самуилова. Кн. 6. - М.: Высш. шк., 1987. - 143 с. 10. Загребельный С. Н. Биотехнология. Ч. 1: Культивирование продуцентов и очистка продуктов: Учеб. пособие. - Новосибирск: Новосибирский гос. ун-т, 2000. - 108 с. 11. Загребельный С. Н. Биотехнология, Ч. 2. Инженерная энзимология: Учеб. пособие. - Новосибирск: Новосибирский гос. ун-т, 2001. - 138 с. 12. В. Н. Рыбчин. Основы генетической инженерии. Учебник для вузов. 2-е изд. - СПб: Изд-во СПб ГТУ, 1999. - 522 с. Лариса Владимировна Тимощенко Марианна Валериановна Чубик Date: 2015-09-24; view: 2027; Нарушение авторских прав |