Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Проверка гипотезы о виде распределения генеральной совокупности
Н а следующем этапе работы по виду полигона частот (гистограммы) и полученным значениям числовых характеристик выдвигаем гипотезу о виде распределения генеральной совокупности и проверяем соответствие данной гипотезы эмпирическим данным. После того, как выдвинули гипотезу, находим теоретические частоты, соответствующие предполагаемому распределению:
1. Нормальный закон распределения Если полигон частот является симметричным, а числовые характеристики выборки удовлетворяют особенностям этого распределения , то делаем предположение, что выборка получена из нормально распределенной генеральной совокупности. Этот закон имеет два параметра, оценки которых находим по выборке:
- выборочное среднее приравниваем к математическому ожиданию,
- выборочное среднеквадратичное отклонение (стандарт) приравниваем к его теоретическому значению. Функция плотности вероятности для нормированной переменной приводят по таблице на стр.408 . Теоретическую частоту находим по формуле 2. Показательный закон. Этот закон характеризуется одним параметром , оценку которого находим по методу моментов, приравнивая выборочное среднее к теоретическому значению математического ожидания: , .
Особенностью распределения является равенство единице коэффициента вариации . Теоретические частоты находим по формуле
1. Гамма распределение характеризуется двумя параметрами, оценки которых находим, приравнивая теоретические и выборочные моменты с учетом того, что , коэффициент вариации . Оценку теоретической частоты находим по формуле Значение гамма-функции находим по таблице (например, Г. Корн, Т. Корн Справочник по математике).
Полученные теоретические частоты наносим на полигон частот. Если согласие между эмпирическими и предполагаемыми теоретическими частотами визуально достаточно хорошее, то проводим проверку выдвинутой гипотезы по критерию (стр. 278-281). При этом выборочное значение статистики критерия находят по формуле . Здесь - число интервалов с учетом того, что . Если это условие не выполняется, то объединяем соседние интервалы. Теоретическое значение статистики критерия находим по таблице на стр. 412: . В этом выражении – число степеней свободы. Здесь - это число параметров распределения, оцениваемых по выборке. Так для показательного закона , для нормального закона и гамма-распределения .
Если выполняется условие , то выдвинутая гипотеза не противоречит опытным данным на заданном уровне значимости и не может быть отвергнута.
Далее приведен пример сравнения эмпирического распределения, полученного по выборке, и нормального распределения параметрами .
Date: 2015-09-24; view: 702; Нарушение авторских прав |