Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Классификация точек разрыва функции





Все точки разрыва функции разделяются на точки разрыва первого и второго рода.

Говорят, что функция f (x) имеет точку разрыва первого рода при x = a, если в это точке

  • Существуют левосторонний предел и правосторонний предел ;
  • Эти односторонние пределы конечны.

При этом возможно следующие два случая:

  • Левосторонний предел и правосторонний предел равны друг другу:

Такая точка называется точкой устранимого разрыва.

  • Левосторонний предел и правосторонний предел не равны друг другу:

Такая точка называется точкой конечного разрыва. Модуль разности значений односторонних пределов называется скачком функции.

Функция f (x) имеет точку разрыва второго рода при x = a, если по крайней мере один из односторонних пределов не существует или равен бесконечности.

Пример 3.13 Рассмотрим функцию (функция Хевисайда) на отрезке , . Тогда непрерывна на отрезке (несмотря на то, что в точке она имеет разрыв первого рода).

 

Рис.3.15.График функции Хевисайда

 


Аналогичное определение можно дать и для полуинтервалов вида и , включая случаи и . Однако можно обобщить данное определение на случай произвольного подмножества следующим образом. Введём сначала понятие индуцированной на базы: пусть -- база, все окончания которой имеют непустые пересечения с . Обозначим через и рассмотрим множество всех . Нетрудно тогда проверить, что множество будет базой. Тем самым для определены базы , и , где , и -- базы непроколотых двусторонних (соответственно левых, правых) окрестностей точки (их определение см. в начале текущей главы).

 

38. Производная. Её геометрический смысл. Дифференцируемость функции.

Пусть - функция, - произвольная (но фиксированная) точка из области её определения.

Производной функции в точке называется предел (если он существует и конечен) отношения приращения функции к приращению аргумента при условии, что последнее стремится к нулю.

Наиболее употребительны следующие обозначения производной:





Геометрический смысл производной – производная от данной функции f(x) при данном

значении x0 аргумента равна угловому коэффициенту касательной к графику этой

функции в соответствующей точке M0(x0, f(x0)).






Date: 2015-09-05; view: 127; Нарушение авторских прав

mydocx.ru - 2015-2019 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию