Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Обробка результатів експерименту





Основною метою регресійного аналізу є одержання за результатами активного експерименту моделі, що адекватно описує поведінку досліджуваного об’єкту. Проведення експерименту повинно строго відповідати обраному випадковому порядку.

Коли є сумнів, що умови проведення дослідів залишаються постійними, то досліди в кожній точці факторного прос тору дублюються(проводиться серія дослідів ).

Припустимо, що в кожній точці факторного прос тору, якій відповідає один з рядків матриці планування проводять серії із m дослідів. Для будь-якої і-точки обчислюють середнє значення вихідної величини:

і рядкову дисперсію вихідної величини (точніше її оцінку):

Знайдені таким чином рядкові дисперсії викорис товують для перевірки відтворюваності дослідів , яка полягає в перевірці одноріднос ті рядкових дисперсій – однієї з основних передумов множинного регресійного аналізу.

У подальшому будемо розглядати етапи обробки результатів експерименту на прикладі 2х факторного експерименту (табл. 4.5).

Таблиця 4.5

№ п/п X0 X1 X2 X1 X2 y1i y2i y3i yi S2{yi}
+1 -1 -1 +1
+1 +1 -1 -1
+1 -1 +1 -1
+1 +1 +1 +1

 

Знайдемо середні значення вихідної величини

а також рядкову дисперсію вихідної величини:

Серед, усієї сукупності розрахованих рядкових дисперсій визначаємо максимальне і беремо відношення даної дисперсії з суми всіх рядкових дисперсій , тобто знаходимо коефіцієнт Кохрена:

У разі ідеальної одноріднос ті коефіцієнт Gp прагне до значення 1/N. Розрахункове значення коефіцієнта Кохрена порівнюємо з табличним (критичного G-критерію), яке вибираємо із таблиці для прийнятого рівня значущості α і для чисел ступеня свободи f1=m-1, f2=N. Знаходимо розрахункове значення Gp=43/(43+16+12+4)=0,57.

Згідно з таблицею для α=0,05, f1=2, f2=4. Знаходимо GT=0.77; GT> Gp, тобто умова виконується. Пересвідчившись в однорідності, перейдемо до визначення оцінок коефіцієнтів за формулою



де n-номер вектор-стовпчика. Одержимо

Знайдені таким чином коефіцієнти рівняння регресії необхідно оцінити на статистичну значущість. Оцінка виконуємо за t- критерієм Ст’юдента. Для кожного коефіцієнта обчислюємо коефіцієнт , тобто перевіряємо відхилення від нуля знайденої оцінки an .

Тут - оцінка середнього відхилення похибки визначення коефіцієнта.

Оцінка дисперсії коефіцієнтів, знайдених за експериментальними даними:

Беремо до уваги, що хіn у всіх дослідах в кодованому вигляді приймає значення +1 або – 1, тому для випадку незалежних випадкових величин хіn знак під знаком суми не впливає на результат. Крім того відомо, що дисперсіїсереднього в m - разів менше дисперсії одного вимірювання(m- кратність проведення дослідів), тобто

На основі вищесказаного і з урахуванням однорідності рядкових дисперсій можна записати

Оцінка генеральної дисперсії відтворюваності , що характеризує точність (усереднення) одного вимірювання, є середнє з усіх рядкових дисперсій:

або

Таким чином, оцінку дисперсії коефіцієнта можна записати у вигляді

У деяких випадках, коли є впевненість, що дисперсії однорідні, оцінкою дисперсії відтворюваності може служить одна з рядкових дисперсій або оцінка дисперсії для будь-якої точки факторного простору (точніш за все це буває центр плану).

 

Коли число паралельних дослідів у кожній точці факторного прос тору різне, при усередненні однорідних дисперсій для оцінки дисперсіївідтворюваності корис туються середньозваженим значенням дисперсій, узятих з урахуванням ступенів свободи

де- fi=mi-1- число ступенів свободи в і-му досліді, m - число паралельних дослідів.

Суть t- критерію Ст’юдента перевірки статистичної значущості знайдених оцінок коефіцієнтів полягає в наступному. Зміна вихідної величини залежить від впливу кожного члена апроксимуючого поліному і некерованих та неконтрольованих факторів.

Вплив n-го фактора, відхилення оцінки n-го коефіцієнта від нуля враховується коефіцієнтом , вплив же некерованих і неконтрольованих факторів, а також похибки вимірювання вихідної величини можуть бути враховані за допомогою дисперсії відтворюваності 2 в S , яка має N(m-1)ступенів свободи (N-ступенів загублено при обчисленні рядкових середніх). При вибраному рівні статистичної значущості:α за таблицями розподілу Ст’юдента при числі ступенів свободи f= N (m-1)знаходять табличне значення коефіцієнта tтабл. Знайдене табличне значення порівнюють з розрахованим табличним значенням коефіцієнта. Якщо виконується нерівність tтабл.> tn, то приймається нуль-гіпотеза, тобто при обраному рівні статистичної значущості α (статис тичної достовірності 1-α) і числі ступенів свободи f вважається, що знайдений коефіцієнт є статис тично незначним і його необхідно виключити із рівняння регресії.



Таким чином, при виконанні умови (tтабл.> tn) неможливо визначити (в 100- α випадках), чим викликано зміна вихідної величини: впливом кожного члена рівняння регресії або впливом неврахованих факторів і наявніс тювипадкової похибки вимірювання вихідної величини.

Для розглянутого прикладу оцінка дисперс ії відтворюваності як оцінкаусереднених рядкових дисперсій згідно з таблицею буде

Як вже відмічалось, через властивіс ть нормування оцінки коефіцієнтів будуть знайдені з однаковою дисперсією, тобто

Тоді

Знайдемо обчислене значення коефіцієнта Ст’юдента tn для встановлених оцінок коефіцієнтів

Аналогічно одержимо

Із таблиці при рівні статистичної значущості α=5% і числі с тупенів свободи f= N (m-1)=4(3-1)=8 знайдемо табличне значення коефіцієнта. Воно дорівнює tт=2,3. Зіставимо розрахункове значення tn з табличним tтабл

Нерівніс ть виконується для t12. Таким чином, можна вважати, що коефіцієнт статистично незначний і його можна виключити з рівняння регресії – в данному випадку вплив парної взаємодії відсутній, але незначний проте перед тим якприйняти гіпотезу , необхідно переконатися у правильності пос тавленого експерименту. Може трапитися, що вибір діапазону вимірювання незалежної змінної (Х n max- Х n min) малий, а сумарна випадкова перешкода, накладена на вихідну величину об’єкта, значна. Це також може призвести до статистичної незначущості коефіцієнта. Пересвідчившись, що з цієї точки зору експеримент проведений правильно, можна коефіцієнт виключити з рівняння регресії.

Оскільки повний факторний експеримент має властивості ортогональності, то виключення цього коефіцієнта з рівняння регресії не впливає на знайдені оцінки інших коефіцієнтів.

Таким чином, рівняння регресії досліджуваного об’єкта, який міс тить статистичні значущі коефіцієнти, буде ( в кодованій системі)

Для кожного коефіцієнта можна знайти довірчий інтеграл, в якому повинен попас ти істинний генеральний коефіцієнт з прийнятим рівнем значущості. Для цього використовуємо формулу

Отже, істинні значення коефіцієнтів моделі будуть знаходиться в межах

Одержане рівняння регресії, треба перевірити на адекватність досліджуваному об’єкту, тобто встановити, наскільки добре воно апроксимує одержані експериментальні дані. Для цього необхідно оцінити, наскільки відрізняються середні значення вихідної величини, одержаної в планах факторного простору в результаті проведення дослідів, і значення , одержаного з рівняння регресії в тих же точках факторного простору.

Для цього обчислюємо залишкову дисперсію, яку ще називають дисперсією адекватнос ті:

де m- число паралельних дослідів в і-й точці факторного простору, l-число здайдених в результаті проведених N - дослідів значущих коефіцієнтів.Якщо число паралельних дослідів різне, тоді оцінку дисперсії адекватності знаходимо із виразу

Відмінність S′ад2 від нуля пояснюється в загальному випадку двома причинами: дійсно неадекватністю рівняння регресії фізичному об’єкту (неправильно вибраний апроксимуючий поліном) і наявніс тю випадкової похибки сприйняття, що характеризується Sв2.

Якщо модель адекватна, то оцінки дисперсії відтворюванос ті залежать тільки від похибки сприйняття вихідної величини, зумовленої сумарною перешкодою, і в граничному випадку будуть однакові. Тому адекватність одержаної моделі перевіряємо шляхом порівняння оцінок двох дисперсій Sад2 і Sв2 і F- критерію Фішера:

Знайдене Fр порівнюємо з табличним значенням Fт, яке встановлюємо при рівні статистичної значущості α і числі ступенів свободи fад=N-l I fв=N (m-1)

Якщо Fр< Fm , то одержана математична модель з прийнятим рівнем статистичної значущості α адекватна експериментальним даним і її можна використати для подальших досліджень. Повернемось до прикладу. Визначимо для одержаної моделі оцінку дисперсії адекватності.

Обчислимо значення , які відповідають рядкам матриці плану:

Оцінка дисперсії:

Одержане значення Sад2=27 розділимо на Sв2 =18,75 і одержимо F=1,44.

Табличне значення коефіцієнта Фішера на рівні статис тичної значущості α=0,05 і числі ступенів свободи fад=(4-3)=1 і fв= N (m-1)=4(3-1)=8 буде Fm=5,32.

Таким чином, при вибраному рівні статистичної значущості α=0,05 одержане в результаті експерименту адекватнее досліджуваному об’єкту. Відмітимо, що дана модель представлена в кодованій системі координат. Щоб одержати її у звичайній системі, треба використати формули переходу.

На практиці часто буває , що лінійне рівняння регресії незадовільно характеризує досліджувану область.

Рис.4.2 Перевірка адекватності лінійної моделі

На рис. 4.2 показаний випадок парної залежності, коли дослідні й розрахункові дані в точках, в яких проводився експеримент (у кодованій системі Х11= -1 і Х21=1) співпадають, проте всередині поля кореляції спостерігаються значні відхилення регресійної і реальних залежностей.

Для підвищення надійності перевірки адекватнос ті моделі час то проводять допоміжну серію паралельних дослідів у базовій точці xj=0, Тоді число точок факторного простору, за яким оцінюється адекватніс тьрівняння регресії, збільшують на одну і воно дорівнює N+1, тобто збільшується на одиницю і число ступенів свободи fад, що підвищує статис тичну надійніс тьприйнятих рішень. Однак базова точка не враховується в розрахункахкоефіцієнтів рівняння регресії. Значення вихідної величини в центрі плануповинно бути порівняне (в межах дисперсії відтворюваності) з вільним членомрівняння регресії, тобто

де - δ наперед задане значення, що залежить від Sв2.

У разі порушення цієї нерівності для математичного опису необхідні рівняння більш високого порядку.

 

Таблиця 4.6

 

№ п/п x1 x2 x3 x0 x1 x2 x1 x3 x2 x3 x1 x2 x3
-1 -1 -1 +1 +1 +1 +1 -1
+1 -1 -1 +1 -1 -1 +1 +1
-1 +1 -1 +1 -1 +1 -1 +1
+1 +1 -1 +1 +1 -1 -1 -1
-1 -1 +1 +1 +1 -1 -1 +1
+1 -1 +1 +1 -1 +1 -1 -1
-1 +1 +1 +1 -1 -1 +1 -1
+1 +1 +1 +1 +1 +1 +1 +1

 

Розглянемо ще один приклад побудови математичної моделі за результатами експерименту. Вважаємо, що на об’єкт діють три фактори:

які пов’язані з вихідною величиною залежністю

Середнє значення Xjcp=(X j max+X j min)і інтервал варіюваннянезалежних змінних будуть

Підставимо значення X jcp і Аj у формулу переходу і одержимо рівняння моделі в кодованій системі координат:

Оцінку коефіцієнтів цієї моделі будемо знаходити за експериментальними даними, одержаними в результаті проведення типу 2n , де n=3. Згідно з відомим правилом побудуємо матрицю повного трифакторного експерименту, яка має властивості ортогональнос ті симетричності і нормування (табл. 4.6).

Вважаємо, що досліди однорідні. Тому в кожній точці факторного простору можна проводити тільки за одним дослідом ( серія паралельних дослідів не проводиться). Значення вихідної величини для цього випадку наведені у табл. 4.6.

Для визначення оцінок коефіцієнтів рівняння регресії доповнимо матрицю плану (обведена більш жирними лініями) вектор-стовпцями фіктивної змінної і лінійними взаємодіями факторів.

За результатами експерименту визначимо оцінки коефіцієнтів:

Для визначення оцінки дисперсії відтворюваності, а також більш достовірної перевірки адекватності одержаної моделі в центрі плану була поставлена допоміжна серія із р=3 дослідів і одержані наступні значення:

Середнє значення вихідної величини в центрі плану (х=0)

а дисперсія в центрі плану, яка приймається за оцінку дисперсії відтворюваності, визначається так:

Оскільки виконується умова нормування, оцінки коефіцієнтів даної моделі будуть знайдені з однаковою дисперсією, тобто

кратність досліду в кожній і-й точці ( і=1, N ) дорівнює одиниці, тобто m=1.

Звідки

Перевіримо статистичну значущіс ть знайдених коефіцієнтів, встановимо розраховані значення коефіцієнта

Табличне значення коефіцієнта Ст’юдента при α=0,05 і числі ступенів свободи (р-1)=(3-1)=2 (оцінка дисперсії відтворюваності проводилась на основі серії із р=3 дослідів в одній точці – центрі плану).

Порівнюючи табличне і обчислене tn значення коефіцієнтів, встановимо, що незначущими (так як ) є знайдені оцінки коефіцієнтів

Рівняння регресії, яке має статистичні коефіцієнти,

Одержану таким чином математичну модель необхідно перевірити на адекватність. Для цього визначимо оцінку дисперсії адекватності. Оскільки кратність дослідів дорівнює одиниці, тобто m=1, то

Попередньо переконавшись, що рівняння регресії “підходить” для опису експериментальних даних, оскільки середнє значення вихідної величини в центрі плану , а оцінка свобідного члена I знайдемо значення вихідної величини на основі рівняння регресії в точках плану. Для першoї точки

Аналогічно одержимо значення і для інших точок плану, які зведені в табл.3, виходячи з якої знайдемо оцінку дисперсії адекватності при умові, що N -l =8 -4(l =4) , тобто уточнене рівняння регресії має чотири коефіцієнти:

Знаючи значення S’2 встановимо обчислене значення коефіцієнта Фішера:

 

Таблиця 4.7

 

№ п/п

 

Число ступенів свободи f =(N-l)=4, fв=p-1=2. Задаючись рівнем статистичної значущості a=0,05 , при f =4 і fв =2 в , знайдемо табличне значення FT=19.3.

Таким чином з достовірніс тю ( 1-α)=95% рівняння регресії адекватне експериментальним даним.

Одержане рівняння регресії предс тавлено в кодованій системі координат. Для переходу в звичайну систему координат скористуємося формулою переходу і значеннями хjср і Pj. Тоді

або

Остаточно одержимо рівняння регресії

,

що адекватно описує експериментальні дані.

 






Date: 2015-09-19; view: 215; Нарушение авторских прав

mydocx.ru - 2015-2019 year. (0.02 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию