Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Наращенная сумма постоянной ренты постнумерандо





Методом прямого счета, как это было показано в § 5.1, можно найти наращенную сумму и современную стоимость любого потока платежей, в том числе и постоянной ренты. Однако удобнее, особенно в аналитических целях, воспользо­ваться более компактными формулами. Поскольку обобщаю­щие характеристики постоянных рент играют существенную роль в анализе финансовых операций, получим эти формулы для всех видов постоянных рент, хотя для понимания суще­ства дела, вероятно, достаточно разобраться с расчетом соот­ветствующих характеристик лишь для некоторых из них. В этом и следующем параграфах анализируются ренты постну­мерандо.

Годовая рента. Начнем с наиболее простого случая — годо­вой ренты постнумерандо. Пусть в течение п лет в банк в кон­це каждого года вносится по R рублей. На взносы начисляются сложные проценты по ставке / % годовых. Таким образом, име­ется рента, член которой равен R, а срок — п. Все члены рен­ты, кроме последнего, приносят проценты — на первый член проценты начисляются п — 1 год, на второй п — 2 и т.д. На по­следний взнос проценты не начисляются (напомним, что рента постнумерандо). Наращенная к концу срока каждого взноса сумма составит:

Л(1 + /Г"1, Л(1 + 0я"2,..., ЛО + 0, Л

Перепишем этот ряд в обратном порядке. Нетрудно убедить­ся в том, что он представляет собой геометрическую прогрес­сию со знаменателем (1 + I) и первым членом Л. Число членов прогрессии равно п. Искомая величина очевидно равна сумме членов этой прогрессии.

Откуда

(1+/Г-1 (И-У-1
S R (l + 0-l / (5"4)

Обозначим множитель, на который умножается Л, через sn4, нижний индекс n;i указывает на продолжительность ренты и ве­личину процентной ставки (часто в литературе можно встретить


обозначение sny). В дальнейшем этот множитель будем называть коэффициентом наращения ренты. Данный коэффициент пред­ставляет собой наращенную сумму ренты, член которой равен 1:

пА< \/ (i + 'T-i

г-о '

Таким образом,

S=Rsn;i. (5.6)

Как видим, коэффициент наращения ренты зависит только от срока (числа членов ренты) и процентной ставки. С увели­чением значения каждого из этих параметров его величина рас­тет. При / = О имеем S= Rn. Значения коэффициента легко та­булировать (см. табл. 6 Приложения).

ПРИМЕР 5.3. Для обеспечения некоторых будущих расходов со­здается фонд. Средства в фонд поступают в виде постоянной го­довой ренты постнумерандо в течение 5 лет. Размер разового платежа 4 млн руб. На поступившие взносы начисляются процен­ты по ставке 18,5% годовых. Поскольку в таблице коэффициентов наращения Приложения нет такого значения ставки, то необходи­мую величину определим по формуле (5.4). Величина фонда на конец срока составит

о л л 0+0,185)5-1 ООЛ

s = 4 х S5;18,5 = 4 х------------------- ^85----------- = МЛН РУ

Для расчета наращенной суммы можно воспользоваться па­кетом Excel БЗ (FV), который следует применять только в тех случаях, когда р = т. Последовательность действий и пример применения этой программы показаны ниже — там, где речь идет о таких рентах.

Полезно проследить взаимосвязь коэффициентов наращения, относящихся к последовательным интервалам времени. Для слу­чая, когда общий срок определяется как п = /i, + nv получим

Годовая рента, начисление процентов т раз в году. Пусть как и выше, анализируется годовая рента постнумерандо. Однако


проценты теперь начисляются т раз в году. Число членов ренты равно пт. Члены ренты с начисленными к концу сро­ка процентами образуют ряд (перепишем его в обратном по­рядке):

Л, Л(1 +y//w)w, Л(1 +у/т)2/я,..., Л(1 +y//w)<'|-,>/w,

где у — номинальная ставка процентов (см. § 3.3).

Нетрудно убедиться, что и в этом случае мы имеем дело с возрастающей геометрической профессией. Первый член про­грессии равен Л, знаменатель — (1 +<///w)w. Сумма членов этой прогрессии составляет

(1 + j/m)mn - 1
5" Л(1+у/т)--1 " **«*" (58)

ПРИМЕР 5.4. Несколько изменим условия примера 5.3. Пусть те­перь проценты начисляются поквартально, а не раз в году. Име­ем j/m = 18,5/4, тп = 20:

(1 + 0,185 /4)20- 1

S = 4---------- 1 ----- '—Ч------- = 29,663 млн руб.

(1 + 0,185 / 4)4 - 1 ' му

Как видим, переход от годового начисления процентов к по­квартальному несколько увеличил наращенную сумму.

Рассмотрим теперь методы расчета наращенной суммы для вариантов /ьсрочной ренты постнумерандо при условии, что /и = 1,/и=/>и/и*/>.

Рента /^-срочная = 1). Пусть рента выплачивается р раз в году равными суммами, процент начисляется раз в конце года. Если годовая сумма платежей равна /?, то каждый раз выпла­чивается R/p. Общее число членов ренты равно пр. Последова­тельность членов ренты с начисленными процентами предста­вляет собой геометрическую прогрессию. Первый член ее ра­вен R/p, знаменатель — (1 + i){/p. Сумма членов этой прогрес­сии


s р х о + о'/>-1 R P[(i +,y/>- и Ki- (59)


ПРИМЕР 5.5. Вернемся к условиям примера 5.3. Допустим, пла­тежи выплачиваются поквартально: Я/р=1 млн руб., общее число платежей равно 20. Наращенная сумма составит

1.1855- 1 S = 4 4(1,18514-1) = 30'834 МЛН РУб*

Рента ^-срочная = т). На практике наиболее часто встре­чаются случаи, когда число выплат в году равно числу начисле­ний процентов: р = т. Для получения необходимой формулы воспользуемся (5.4), в которой / заменено нау//и, а вместо чис­ла лет берется число периодов выплат ренты пр, член ренты ра­вен R/p. Поскольку р = /и, то в итоге получим

R (1 + 7/т)™-1(1 +7//ЯГ-1

о = — х-------- "--------- = К ---------:-------. (5.10)

т j/m j

Полученные выше формулы (5.4) и (5.5) могут применяться и для определения наращенной суммы /ьсрочной ренты. В этом случае переменная п означает число периодов, в свою очередь / является ставкой за период. Например, пусть рента постнуме-рандо выплачивается по полугодиям. Тогда в формуле (5.4) под п следует понимать число полугодий, а под / — сложную став­ку за полугодие.

Для расчета наращенной суммы для этого случая можно вос­пользоваться программой БЗ (FV) пакета Excel Эта программа помимо потока постоянных платежей учитывает единовремен­ный взнос (имеющиеся средства) в начале срока. Расчет произ­водится по формуле

S = Rsml+ Н3(1 + О",

где R — член ренты, НЗ — единовременный взнос, sn;i — коэф­фициент наращения постоянной ренты, п — число' периодов выплаты ренты и начисления процентов, / — процентная став­ка за период.







Date: 2015-09-19; view: 804; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.009 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию