![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Числовые характеристики случайных величин, их статистические и вероятностные значения. Центрированные случайные величины. Некоррелированные случайные величины
Полной характеристикой случайной величины является закон распределения. На практике такая характеристика не всегда может быть получена из-за ограниченности экспериментальных результатов. В этих случаях вместо законов распределения используют приближенное описание случайных величин, которая получается с помощью минимального числа неслучайных характеристик. Количество этих характеристик должно быть небольшим, но должно отражать наиболее существенные особенности распределении: · математическое ожидание случайной величины; · дисперсия (момент нулевого порядка, 1-го). Простейшей числовой характеристикой дискретной случайной величины Х – среднее значение: Для характеристики разброса значений дискретной случайной величины в данной серии опытов используется квадрат разности между значениями случайно величины и её средним значением: Если результаты экспериментов характеризуются не одной случайной величиной, а несколькими, то кроме рассмотренных характеристик вводятся величины, характеризующие степень зависимости между этими случайными величинами. В качестве такой характеристики, например для 2-х случайных величин х и у в данной серии опытов принята величина: Для непрерывных случайных величин математическое ожидание, дисперсия и корреляционный момент определяются через плотность: Для независимых случайных величин:
Date: 2015-07-23; view: 908; Нарушение авторских прав |