Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Характеристика закономерностей рядов распределения





Изменение частот в вариационных рядах называют закономерностями распределения. Кривая распределения – графическое изображение в виде непрерывной линии изменения частот в вариационном ряду.

Уравнение нормальной кривой имеет следующий вид:

у (t) = ,

где у (t) – ордината кривой нормального распределения;

t – нормированное отклонение, равное t = ;

– число 3,1415;

e – число 2,7182.

Различают следующие виды кривых распределения:

– одновершинные (симметричные и асимметричные);

– многовершинные.

При симметричном распределении частоты любых двух вариантов, равностоящих в обе стороны от центра распределения, равны между собой, т. е. = = .

Для сравнительного изучения асимметрии распределений вычисляют относительный показатель асимметрии ( ) по формулам

= или = .

При правосторонней асимметрии < < , > 0.

При левосторонней асимметрии > > , < 0.

Степень асимметрии можно определить как отношение момента третьего порядка к среднему квадратическому отклонению в кубе по формуле = .

Асимметрия выше 0,5 (без учета знака) считается значительной, меньше 0,25 – незначительной.

Для нормального распределения характерны следующие зависимости:

R = и = .

Под эксцессом распределения понимается высоковершинность или низковершинност ь распределения по сравнению с нормальным распределением.

При высоковершинности наблюдается скопление частот в середине ряда, а при низковершинности – разбросанность частот ряда.

Для характеристики степени эксцесса применяется коэффициент эксцесса (Е)

Е = ,

где – момент четвертого порядка

.

Если Е = 0 – нормальное распределение;

Е > 0 – выше нормального;

Е < 0 – ниже нормального.







Date: 2016-01-20; view: 409; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию