![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Понятие неопределенного интеграла
Если функция F(x) является первообразной ф-ии f(x) на (a,b), то множество всех первооб-х для f(x) задается формулой F(x)+C, где С-постоянное число. Множество всех первооб-х ф-ий F(x)+C для f(x) наз-ся неопределнным интегралом от ф-ии f(x) и обозначается символом ∫f(x)dx. Таким образом, по определению ∫f(x)dx=F(x)+C. Операция нахождения неопределенного интеграла от ф-ии наз. интегрированием этой ф-ии.
Свойства неопределенного интеграла 1. Дифференциал от неопределённого интеграла равен подынтегральному выражению Таблица основных неопределенных интегралов
49. Основные методы интегрирования (метод интегрирования подстановкой) Метод подстановки (замена переменной). Если удается свести подинтегральное выражение к виду f(ų(t) ų’(t)dt и известен ∫d(x)dx=F(x)+C, то интеграл ∫f(ų(t)ų’(t)dt= F(ų(t))+C. Иногда приходится исходную переменную выражать через дифференциальную ф-ию: ∫f(x) dx, x=ų(t), dx= dų(t)=ų’(t)dt. Др. словами, формулу интегрирования подстановкой можно применять справа налево.
50. Основные методы интегрирования (метод интегрирования по частям)Пусть u=u(x) и u=v(x) –ф-ии, имеющие непрерывные производные. Тогда d(uv)=u·dv+v·du. Интегрируя это равенство, получим ∫d(uv)=∫u·dv+∫v·du или ∫u·dv=uv-∫v·du - формула интегрирования по частям. 1.Если в произведении одним из множителей явл log или arc ф-ии, то за u берут их, а все ост-ые принять за dv. 2.Если не Iog, не arc ф-ий нет, то за u берут степенную ф-ю. 3.Если под знаком интеграла стоит произведение показат-ой ф-ии на тригонометрич-ую, то нет разницыЭ, что принять за u.
51. Простейшие дроби 4 типов. Дробь вида P(x)/Q(x), где Pn(x) и Qm(x) являются многочленами степени n и m, называется рациональной. Если показатель степени числителя больше показателя степени знаменателя, то дробь называется неправильной, в противном случае — правильной. Правильные рациональные дроби вида: (I). A/x-a; (II). A/(x-a)ⁿ (n≥2, nЄ N); (III). Mx+N/x²+px+q (корни знаменателя комплексные, т.е p²-4q<0); (IV). Mx+N/(x²+px+q)ⁿ (n≥2, корни знамен. компл-е), где A, a, M, N, p, q - действительные числа, наз-ся простейшими рациональными дробями I, II, III и IV типов.
Date: 2016-01-20; view: 1148; Нарушение авторских прав |