Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Экспоненциального сглаживания
Для прогнозирования характеристик образцов техники, математическое описание которых имеет вид , (4.10) целесообразно применять метод экспоненциального сглаживания. Сложившаяся практика использования этого метода предполагает ограничение числа членов ряда Тейлора , (4.11) аппроксимирующего выражение (4.10), несколькими членами . В зависимости (4.11) – -я производная функции по переменной в точке ; ; – число наблюдений; – значение величины шага упреждения. Для условий, когда ошибки прогнозирования не удовлетворяют заданным требованиям, можно осуществить анализ их источников. Известно [4], что точность прогнозной задачи можно определить по зависимости , (4.12) где ; – погрешность, обусловленная приближенностью исходной информации; – погрешность, связанная с методом прогнозирования; – погрешность, вызванная неточностью вычислений; – нерегулярная погрешность, обусловленная вероятностью непредсказуемых в настоящее время событий, влияющих на характер изменения прогнозируемой величины. Одной из наиболее весомых является методическая ошибка, зависящая от числа членов разложения. В работах [1], [2] приводятся аналитические зависимости для выполнения параметров аппроксимирующего многочлена при . Вывод таких зависимостей для представляет значительные трудности. Кроме того, любое увеличение числа членов выражения (4.11) влечет за собой потребность увеличения объема исходных данных, необходимых для определения оценок начальных значений коэффициентов (методом наименьших квадратов или в более общем случае методом максимального правдоподобия), далее предлагается модификация метода экспоненциального сглаживания, основанная на принципах группового учета аргументов. Сущность метода заключается в том, что математическая модель объекта прогнозирования , называемая в соответствии с терминологией работы [1] его «полным описанием», заменяется набором «частных описаний» вида . По принятому критерию, значение которого вычисляется для каждого «частного описания», из множества отбирается некоторое число, называемое «свободой выбора», наиболее регулярных описаний, образующих подмножество . Вычисленные значения промежуточных аргументов принимаются в качестве аргументов «частных описаний» следующего уровня фильтрации, то есть . Аналогичная процедура повторяется до тех пор, пока величина критерия фильтрации уменьшается или увеличивается в зависимости от его содержания (при этом исходная информация делится на две выборки: обучающую и проверочную). Для практических расчетов в качестве такого критерия рекомендуется принимать среднеквадратическую ошибку аппроксимации модели на проверочной выборке, которая, как установлено в работе [10], при увеличении числа уровней фильтрации, а, следовательно, сложности модели, достигает экстремального значения. Сложность модели (измеряется числом ее членов), соответствующая экстремальному значению критерия, является оптимальной. На последнем уровне фильтрации фиксируется «частное описание», значение которого минимально. На предпоследнем уровне выбираются «частные описания», являющиеся аргументами последнего уровня, и т.д. Так как «частные описания» являются функцией двух аргументов, их коэффициенты легко определяются по небольшому количеству исходных данных. Исключая промежуточные переменные можно получить модель исследуемых характеристик объекта прогнозирования в виде аналога «полного описания» , где в общем случае . Как известно, особые трудности при увеличении числа членов в разложении Тейлора связаны с получением аналитических зависимостей для определения вектора коэффициентов . Из работы [2] следует, что , где – вектор-столбец размером сглаженных значений процесса ; – вектор-столбец размером неизвестных коэффициентов ; – матрица размером , элементы которой, соответствующие -й строке и -му столбцу, вычисляются по зависимости . (4.13) В связи с тем, что сглаженные значения процесса могут быть определены по зависимости вектор выражается зависимостью . (4.14) Анализ зависимости (4.13) показывает, что наибольшую сложность вызывает вычисление суммы бесконечного ряда, представляющего собой произведение степеней показательной функции и отношения факториалов, которое можно упростить путем несложных преобразований: , (4.15) где ;
Рис. 4.4. Блок-схема алгоритма прогнозирования по методу модифицированного экспоненциального сглаживания
– коэффициенты многочлена с переменной . С учетом, что при ряд (4.15) вырождается в бесконечно убывающую геометрическую прогрессию со знаменателем , сумма которой равна , сумма любого ряда вида (4.15) может быть вычислена по рекуррентной зависимости , (4.16) где .
Рис. 4.4. Блок-схема алгоритма прогнозирования по методу модифицированного экспоненциального сглаживания (продолжение)
Расчеты по формуле (4.16) при машинной реализации алгоритма можно осуществлять только численным дифференцированием, использование которого нецелесообразно. Поэтому вычисление элементов матрицы рекомендуется выполнять на ЭВМ по зависимости (4.13) с заданной точностью при ограниченном значении . Получив, таким образом, элементы матрицы и вычислив обратную матрицу , вектор коэффициентов определяется по формуле (4.14). Далее, не нарушая общности рассуждений, заметим, что в качестве частных описаний целесообразно использовать зависимость вида . Блок-схема алгоритма прогнозирования, составленного в соответствии с изложенными положениями, изображена на рис.4.4. Date: 2015-05-23; view: 778; Нарушение авторских прав |