Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Получение результатов наблюдений при моделировании
Изложив приемы построения и эксплуатации имитационных моделей, рассмотрим теперь важный вопрос, касающийся получения результатов наблюдений при моделировании. Поскольку моделирование представляет собой эксперимент, получаемые результаты наблюдения должны быть статистически независимы и одинаково распределены, с тем, чтобы была обеспечена возможность правильной статистической интерпретации моделируемой системы. В любом физическом эксперименте оценка результата обычно основывается на среднем значении независимых наблюдений. Величина выбирается таким образом, чтобы был гарантирован определенный доверительный уровень. При моделировании оценка операционной характеристики системы также должна основываться на наблюдениях. Тем не менее, получение результатов независимых наблюдений при моделировании намного сложнее, чем при обычном лабораторном эксперименте. Мы уже видели в примере применения метода Монте-Карло, что первоначально результаты моделирования имеют неустойчивый характер (переходное состояние), а устойчивость (стационарность) обычно достигается при достаточно продолжительном прогоне модели. Таким образом, следует не начинать наблюдения слишком рано, поскольку полученные при этом данные характеризуются значительным разбросом и поэтому не могут давать представление о подлинном поведении системы. Для нас представляет интерес в основном получение результатов наблюдении после того, как достигнуто стационарное состояние, так как в этом случае выборочная ошибка (измеряемая средним квадратичным отклонением) уменьшается, и, следовательно, результаты становятся более точными. При дискретном моделировании достижение стационарного состояния зависит от начальных условий системы, а также от параметров системы. Например, в однофазной модели моделирование может начинаться (в момент ) при отсутствии клиентов в системе или же при непустой очереди. Эти два начальных условия влияют на продолжительность прогона модели, необходимого для достижения стационарного состояния. Что касается характеристик системы, то в одной и той же модели относительные значения интенсивности поступления требований на обслуживание и скорости обслуживания непосредственно сказываются на продолжительности моделирования, необходимого для достижения стационарного состояния. Чем меньше отношение интенсивности поступления требований к скорости обслуживания, тем быстрее модель достигнет стационарного режима. Поскольку основная цель состоит в получении результатов наблюдений с возможно меньшей ошибкой, этого можно достичь с помощью: 1) очень длительных прогонов модели, позволяющих увеличить вероятность достижения стационарного состояния; 2) повторения прогонов модели с различными последовательностями случайных чисел, каждый из которых дает одно наблюдение. Использование различных последовательностей случайных чисел приводит к желаемой независимости получаемых результатов наблюдений. Выборочная ошибка уменьшается, если результаты наблюдения получены в стационарных условиях, но ее можно сделать еще меньше, взяв среднее этих наблюдений, поскольку среднее квадратичное отклонение среднего наблюдений составляет среднего квадратичного отклонения отдельных наблюдений. Несмотря на то, что описанная выше процедура дает небольшую выборочную ошибку, следует обратить внимание на усилия, необходимые для получения результатов наблюдений. Другими словами, хотя уменьшение выборочной ошибки важно, нельзя добиваться этой цели любой ценой. Очевидно, что очень продолжительные прогоны модели, осуществляемые для преодоления переходного состояния, неэкономичны, поскольку они требуют больших затрат машинного времени. На практике при получении результатов наблюдений при моделировании необходимо иметь в виду два следующих соображения: 1) затраты на моделирование могут существенно зависеть от продолжительности прогонов модели; 2) выборочную ошибку можно уменьшить за счет использования улучшенных методов получения выборок, направленных на уменьшение статистической ошибки. Вполне естественно, что нельзя получить что-то из ничего. Как будет показано ниже, продолжительность прогонов модели можно уменьшать, либо получая выборки в переходном состоянии системы, либо достигая устойчивого состояния, но жертвуя при этом некоррелированностью результатов наблюдений. Полезны методы уменьшения выборочной ошибки, называемые методами уменьшения дисперсии, однако их реализация при построении имитационной модели связана с рядом трудностей. Оба положения будут обсуждены ниже. Рассмотрим два метода получения наблюдений: 1)метод повторения, 2)метод подынтервалов. Имеются и другие методы, однако эти два, по-видимому, наиболее подходят для практических приложений. В любом методе получения результатов наблюдений важную роль играет начальный период, во время которого модель переходит в стационарный режим. Естественно, что этот период зависит от типа имитационных моделей и начальных условий. Однако существуют методы, позволяющие определять с точностью до систематической ошибки, можно или нельзя достичь стационарного состояния. Эти методы получили название прерывающих процедур, поскольку в них фиксируется продолжительность начального периода моделирования, который прерывается раньше, чем начинается получение результатов наблюдений. Date: 2015-05-23; view: 583; Нарушение авторских прав |