Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Интегралы движения в квантовой механике





В классической механике , где , тогда A – интеграл движения.

В квантовой механике, чтобы величина , которой ставится в соответствие оператор , была интегралом движения нужно, чтобы .

Для того чтобы физическая величина сохранялась, необходимо и достаточно, чтобы .

1. т. к. , то -значение момента импульса сохраняется, т. е. является интегралом движения.

2. . - интеграл движения.

3. . Отсюда следует. Что различные компоненты момента импульса одновременно не измеримы. А измерима только одна проекция .

4. . Квадрат импульса одновременно измерим с любой компонентой момента импульса.

5. , тогда импульс не является интегралом движения.

§22. Флуктуации физических величин (1/2*)

 

Пусть есть - физическая величина, которая при измерении с вероятностью Wi дает величину , тогда мы можем говорить о среднем и о дисперсии , где

.

Мы вводили флуктуацию

,

отклонение величины от ее среднего значения.

Перенесем все это на язык квантовой механики, т. к. физической величине мы ставим в соответствие .

Можно показать, что .

Неравенство Коши-Шварца: Оно справедливо и для функциональных пространств, в том числе и для гильбертова пространства, которое рассматривается в квантовой механике.

Для двух векторов оно имеет вид

имеет смысл тот, что .

, .

Теперь если обозначить , , тогда будем также рассматривать статистическое усреднение . Отсюда получим из неравенства Коши-Шварца:

Теперь если определить . К тому же по определению из имеем , тогда . Из этого следует, что

.

В случае квантовой механики заменяем на , тогда

.

Задача. Для стационарного состояния частицы в бесконечно глубокой потенциальной яме найти







Date: 2015-05-18; view: 1197; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию