Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Особенности применения нестационарного уравнения





 

По поводу дифференциального уравнения нестационарного переноса типа (157) требуется сделать несколько замечаний. Прежде всего надо сказать, что границы применимости этого уравнения неодинаковы для различных форм явлений. Эти границы определяются конкретной спецификой явлений и степенью отклонения системы от состояния равновесия.

Если система находится вблизи состояния равновесия, когда перенос осуществляется под действием малых разностей интенсиалов, то уравнение (157) справедливо для любых явле­ний. С увеличением степени неравновесности результаты рас­смотрения отдельных явлений с помощью уравнения (157) заметно искажаются, так как возникают дополнительные сте­пени свободы, начинает заметно сказываться неучтенная специфика распространения и взаимодействия соответствую­щих веществ и т.д. Например, вблизи равновесия механическая степень свободы, определяемая равенством (43), ничем не осложняется. С увеличением разности давлений появляется скорость перемещения объектов, заметно отличающаяся от нуля, а с нею и новая кинетическая (метрическая) степень свободы. Неучет этой новой степени может привести к сущест­венным ошибкам. Другой пример: при малой скорости жидкость движется ламинарно, при большой движение становится турбулентным, вихревым, то есть появляется дополнительная вращательная степень свободы. Третий пример: распростра­нение электрического заряда вблизи состояния равновесия не влечет за собой никаких неприятностей. С возрастанием разности электрических потенциалов движение заряда сопро­вождается возникновением кинетической степени свободы и магнитного поля, которыми уже невозможно пренебречь.

В противоположность этому для некоторых других явлений уравнение (157) оказывается справедливым при очень больших отклонениях системы от состояния равновесия. К числу таких явлений относятся вермические (термические), диффузионные и некоторые другие.

Очевидно, что с целью избежания ошибок надо заранее учесть в уравнениях необходимые специфику и дополнитель­ные степени свободы, то есть должны быть заранее выведены более общие и полные уравнения. Тогда при любом отклоне­нии системы от состояния равновесия будут получены правиль­ные результаты. Вблизи состояния равновесия эти общие уравнения должны приводить к более простым частным урав­нениям типа (157). Все эти вопросы подробнее затрагиваются при выводе уравнений Максвелла [21] [ТРП, стр.162].

 

 








Date: 2015-05-09; view: 467; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию