Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Дифференциальное уравнение нестационарного переноса
Необходимо подчеркнуть, что все выведенные уравнения переноса являются строгими только для стационарного режима. При нестационарном процессе, когда интенсиалы претерпевают изменения, внутри системы наряду с переносом происходит также накопление или убыль вещества. В этих условиях важную роль приобретают емкости, причем для определения свойств системы требуется вывести особые уравнения нестационарного переноса. В общем случае система располагает n степенями свободы, а интенсиалы изменяются вдоль всех трех координат х, у и z одновременно; такое поле интенсиалов именуется трехмерным. Для вывода простейших уравнений нестационарного переноса используются второе и третье начала ОТ, а также третье частное уравнение пятого начала. В системе мысленно выделяется элементарный объем dV. Количество данного вещества, вошедшего в этот объем за время dt, сопоставляется с количеством вещества, вышедшего из этого объема за то же время. Разница между этими количествами идет на изменение интенсиалов рассматриваемого объема. В результате получается дифференциальное уравнение нестационарного переноса вещества [12, с.303; 14, с.348; 16, с.41; 17, с.104; 18, с.414; 21, с.195]. Здесь для простоты мы ограничимся случаем, когда система располагает всего двумя степенями свободы (n = 2), а ее интенсиалы изменяются только вдоль одной координаты х (одномерное поле интенсиалов). В этих условиях дифференциальное уравнение нестационарного переноса приобретает вид U1 = L11Z1 + L12Z2 (157) U2 = L21Z1 + L22Z2 где U1 = rcP11(¶P1/¶t); U2 = rcP22(¶P2/¶t); Z1 = ¶2P1/¶x2; Z2 = ¶2P2/¶x2; cP11 = KP11/m; cP22 = KP22/m; r - плотность вещества системы, кг/м3; c - удельная массовая емкость системы по отношению к данному веществу; m - масса системы, кг. Для гипотетического частного случая, когда n = 1 и поле интенсиала одномерное, находим U = LZ или ¶P/¶t = D(¶2P/¶x2) (158) где D - диффузивность: D = L/(rc) (159) Из выражения (158) в частном случае получаются известные дифференциальные уравнения теплопроводности Фурье, второго закона Фика и т.д. Методы решения дифференциальных уравнений типа (157) разрабатывались Н.А. Буткевичюсом [6] [ТРП, стр.160-161].
Date: 2015-05-09; view: 568; Нарушение авторских прав |