Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Вывод уравнения. Согласно пятому началу ОТ, распространение любого данного вещества сопровождается увлечением всех остальных
Согласно пятому началу ОТ, распространение любого данного вещества сопровождается увлечением всех остальных, входящих в переносимый ансамбль. Эффект увлечения одних веществ ансамбля другими определяется перекрестными проводимостями, или коэффициентами увлечения, причем указанному эффекту присущи многие интересные особенности. Чтобы установить эти особенности с количественной стороны, надо вывести соответствующие дифференциальные уравнения. Целесообразно это сделать в самом общем виде, введя группу особых, важнейших для структуры и ее симметрии и, вообще, для термодинамики характеристик А, которые являются функциями главных независимых переменных, входящих в качестве аргументов в основные уравнения ОТ, и измеряются в единицах работы или энергии (в джоулях). Смысл этих характеристик зависит от конкретных значений аргументов и конкретных условий взаимодействия системы и окружающей среды. Для простоты рассуждений ограничимся системой с двумя степенями свободы (n = 2). В термодинамике применительно к термомеханической системе величины А принято именовать характеристическими функциями, или термодинамическими потенциалами. Выше было показано, что аргументами уравнений могут служить не только экстенсоры, но и интенсиалы. Следовательно, при двух степенях свободы число независимых переменных у каждой из функций должно быть равно двум, а общее число экстенсоров и интенсиалов - четырем. Поэтому количество возможных вариантов аргументов, а значит, и искомых функций А должно соответствовать числу сочетаний из четырех по два, то есть шести. Получается следующий набор аргументов: (Е1; Е2), (Р1; Р2), (Е1; Р2), (160) (Е2; Р1), (Е1; Р1), (Е2; Р2). Третий и четвертый, а также пятый и шестой аргументы дают попарно тождественные результаты, если поменять местами индексы 1 и 2. Применим эти аргументы для определения функций А и вывода на их основе соответствующих законов симметрии структуры. Нетрудно сообразить, что первый аргумент (Ε1; Е2) приводит к первой характеристической функции Α1, которая представляет собой не что иное, как энергию U, то есть А1 = U = F1(Ε1; Е2) Дж (161) dА1 = dU = Р1dΕ1 + Р2dЕ2 Дж (162) Это соответствует прежним уравнениям (30) и (35). Далее автоматически следуют законы структуры (73) и ее симметрии (85) и т.д. Равенство (85) служит исходным звеном в первой цепочке законов симметрии, фактически являющейся следствием применения первого аргумента перечня (160). Кстати, такого типа равенства получили название дифференциальных соотношений, или тождеств, термодинамики, или соотношений Максвелла. Первое дифференциальное тождество термодинамики (85) мы выводили, когда исходная характеристическая функция Α1 (энергия U) была уже известна из чисто физических соображений. В отличие от этого при использовании второго аргумента (Р1; Р2) нам предстоит найти не только второе тождество, но также и саму исходную функцию А2. Общий вид второй характеристической функции следующий: А2 = F1(Р1; Р2) Дж (163) dА2 = (¶А2/¶Р1)Р2dР1 + (¶А2/¶Р2)Р1dР2 Дж (162) С учетом размерности величина Α2 выбирается таким образом, чтобы соблюдались требования Е1 = (¶А2/¶Р1)Р2; Е2 = (¶А2/¶Р2)Р1 (165) При этих условиях уравнение (164) приобретает вид dА2 = Е1dР1 + Е2dР2 Дж (166) Функция Α2 хорошо известна в термодинамике, применительно к термомеханической системе она именуется свободной энтальпией, а также изобарным, или термодинамическим, потенциалом, обозначается буквой Φ и конструируется следующим образом [18, с.182]: Ф = U + pV – TS Дж (167) dФ = dU + pdV + Vdp – TdS – SdT = Vdp – SdT Дж (168) где р – давление; V – объем; Т – температура; S – энтропия. При написании выражения (167) использовано правило знаков параграфа 5 гл. VII, правая часть формулы (168) получена с учетом уравнения первого начала ОТ. С помощью функции Α2 легко выводится искомое дифференциальное тождество. Для этого продифференцируем равенства (165) по Р1 и Р2, находим (¶Е1/¶Р1)Р2 = ¶2А2/¶Р21; (¶Е2/¶Р2)Р1 = ¶2А2/¶Р22; (169) (¶Е1/¶Р2)Р1 = ¶2А2/(¶Р1¶Р2); (¶Е2/¶Р1)Р2 = ¶2А2/(¶Р2¶Р1) (170) Сравнение между собой правых частей равенств (170), а также выражений (102) приводит к следующему тождеству: (¶Е1/¶Р2)Р1 = (¶Е2/¶Р1)Р2 (171) или КР12 = КР21 (172) Выражение (171) есть дифференциальное уравнение второго порядка в частных производных. Равенство между собой перекрестных обобщенных проводимостей (172) делает обязательным также равенство всех частных перекрестных проводимостей. Имеем a12 = a21; b12 = b21; L12 = L21; М12 = М21 (173) Соотношения типа (172) и (173) представляют собой искомые дифференциальные уравнения, они справедливы для любого числа степеней свободы n, стационарного и нестационарного режимов и т.д., ибо на их вывод не накладываются какие-либо ограничения. Частными случаями уравнений (172) и (173) являются так называемые соотношения взаимности Онзагера в его термодинамике необратимых процессов [ТРП, стр.163-165].
Date: 2015-05-09; view: 479; Нарушение авторских прав |