Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Загальні положення. Формулювання закону
Перший закон термодинаміки встановлює енергетичний баланс у всіх можливих процесах, але він не визначає, в якому напрямку пройдуть самодовільні процеси. Так за цим законом однаково можливий процес переходу теплоти від гарячого тіла до холодного і навпаки. Однак на практиці, в повсякденному житті, можна впевнитись у тому, що процеси в природі мають певний напрямок. Закономірності цієї спрямованості процесів і визначає другий закон термодинаміки. Він встановлює можливість, напрямок і межу протікання процесів. Як і перший закон термодинаміки, другий закон не може бути виведений теоретично із якихось інших законів, а є узагальненням досвіду всього людства. Історично другий закон термодинаміки був сформульований раніш за перший. Основні його положення є в роботах М.Ломоносова (1747р.), С.Карно (1824р.), Клаузіуса (1850р.), Томсона (1854р.). В кінці ХІХ століття Максвел, Больцман і Гіббс встановили статистичний характер другого закону. У сучасному вигляді закон дозволяє визначити: - які з процесів системи за даних умов можуть протікати самодовільно; - яку кількість роботи можна отримати при цьому; - яка межа самодовільної течії процесу; - якими повинні бути зовнішні умови (Р, Т тощо), щоб певний процес проходив у потрібному напрямку; - яку кількість роботи треба витратити, щоб провести процес у негативному напрямку, та як впливають зовнішні умови на кількість цієї роботи. При вивченні процесів слід розрізняти позитивний та негативний напрямок процесів. Позитивний напрямок – це напрямок, в якому процес протікає самодовільно, без витрати зовнішньої енергії, і при цьому може відбуватися робота. Система при позитивних процесах наближається до рівноваги. Негативний напрямок – це напрямок, в якому процес не може протікати самодовільно, без витрати зовнішньої енергії. Негативний напрямок віддаляє систему від стану рівноваги. Негативний напрямок процесу не завжди можна здійснити, бо є гранично необоротні процеси – вибух, біологічне старіння. Розглянемо питання оборотності процесів. Обернення процесу – це повернення системи із кінцевого стану (2) в вихідний стан (1) тим же шляхом, через ті ж самі проміжні стадії (реакції). Наприклад, зарядження розрядженого акумулятора, зворотна хімічна реакція тощо. Оборотність процесу – це можливість його обернення без залишкових змін в навколишньому середовищі. Тобто не тільки система, але й навколишнє середовище повертається в вихідний стан. Очевидно, що всі реальні фізичні і хімічні процеси необоротні. Але є як гранично необоротні процесі, так і процеси різного ступеня необоротності (оборотності). Оборотність процесу – це ідеальний, граничний стан системи. Оборотними можуть бути тільки рівноважні процеси. Рівноважною називається система, що перебуває в незмінному стані, до того ж ця незмінність не обумовлена зовнішніми процесами. Якщо ж незмінний стан системи обумовлений зовнішніми процесами – така система називається стаціонарною. Особливостями рівноважного оборотного процесу є: - двобічність процесу, тобто можливість обернення процесу при зміні напрямку дії навколишнього середовища на систему; - нескінченна повільність процесу; - рівність сил діючих на систему зовні і сил, протидіючих цьому з боку системи; - рівність температур системи і навколишнього середовища; - максимальна кількість роботи, виробленої системою. Історично склалось декілька формулювань другого закону термодинаміки. Всі вони свідчать про існування самодовільних і несамодовільних процесів і виражають різницю між ними. Більш загальними є слідуючи формулювання. Постулат Клаузіуса: теплота не може самодовільно переходити від менш нагрітого тіла до більш нагрітого. Постулат Томсона: процес, єдиним наслідком якого є перетворення теплоти в роботу, неможливий. Постулат Планка: будь-яка форма енергії може повністю перетворюватись в теплоту, але теплота перетворюється в інші види енергії лише частково. Постулат Оствальда: неможливо створити вічний двигун другого роду, тобто машину, яка б повністю перетворювала підведену до неї теплоту в роботу. Очевидно, що всі формулювання другого закону є еквівалентними і вказують на неможливість самодовільного протікання певних процесів.
Date: 2015-05-08; view: 504; Нарушение авторских прав |